

Guidance Programming Language

Introduction to GPL

Version 4.0.0, June 18, 2015
FINAL RELEASE

P/N: GPL0-DI-00010

Precise Automation Inc., 727 Filip Road, Los Altos, California 94024
www.preciseautomation.com

Document Content

The information contained herein is the property of Precise Automation Inc., and may not be copied,
photocopied, reproduced, translated, or converted to any electronic or machine-readable form in whole or
in part without the prior written approval of Precise Automation Inc. The information herein is subject to
change without notice and should not be construed as a commitment by Precise Automation Inc. This
information is periodically reviewed and revised. Precise Automation Inc. assumes no responsibility for
any errors or omissions in this document.

Copyright © 2004-2015 by Precise Automation Inc. All rights reserved.

The Precise Logo is a registered trademark of Precise Automation Inc.

Trademarks

GIO, GSB, Guidance 3400, Guidance 3300, Guidance 3200, Guidance 2600, Guidance 2400, Guidance
2300, Guidance 2200, Guidance 1400, Guidance 1300, Guidance 1200, Guidance 0200 Slave Amplifier,
Guidance 0006, Guidance 0004, Guidance Controller, Guidance Development Environment, GDE,
Guidance Development Suite, GDS, Guidance Dispense, Guidance Input and Output Module, Guidance
Programming Language, GPL, Guidance Slave Board, Guidance System, Guidance System D4/D6,
PrecisePlace 1300, PrecisePlace 1400, PrecisePlace 2300, PrecisePlace 2400, PreciseFlex 400,
PreciseFlex 1300, PreciseFlex 1400, PrecisePower 300, PrecisePower 500, PrecisePower 2000,
PreciseVision, RIO are either registered or trademarks of Precise Automation Inc., and may be registered
in the United States or in other jurisdictions including internationally. Other product names, logos,
designs, titles, words or phrases mentioned within this publication may be trademarks, service marks, or
trade names of Precise Automation Inc. or other entities and may be registered in certain jurisdictions
including internationally.

Any trademarks from other companies used in this publication are the property of those respective
companies. In particular, Visual Basic, Visual Basic 6 and Visual Basic.NET are trademarks of Microsoft
Inc.

Disclaimer

PRECISE AUTOMATION INC., MAKES NO WARRANTIES, EITHER EXPRESSLY OR IMPLIED,
REGARDING THE DESCRIBED PRODUCTS, THEIR MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. THIS EXCLUSION OF IMPLIED WARRANTIES MAY NOT APPLY TO YOU.
PLEASE SEE YOUR SALES AGREEMENT FOR YOUR SPECIFIC WARRANTY TERMS.

Precise Automation Inc.
727 Filip Road
Los Altos, California 94024
U.S.A.
www.preciseautomation.com

Warning Labels

The following warning and caution labels are utilized throughout this manual to convey critical information
required for the safe and proper operation of the hardware and software. It is extremely important that all
such labels are carefully read and complied with in full to prevent personal injury and damage to the
equipment.

There are four levels of special alert notation used in this manual. In descending order of importance,
they are:

DANGER: This indicates an imminently hazardous situation, which, if not
avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous situation, which, if not
avoided, could result in serious injury or major damage to the equipment.

CAUTION: This indicates a situation, which, if not avoided, could result in
minor injury or damage to the equipment.

 NOTE: This provides supplementary information, emphasizes a point or
procedure, or gives a tip for easier operation

Table Of Contents
The Guidance Programming Language___ 1

1. GPL Overview 1

2. Statement structure 2

3. Data Type and Variables 2

3.1. Basic Data Types 2

3.2. Variable Declarations 4

3.3. Data Type Arrays 6

3.4. Scope of Names 8

4. Objects and Classes 8

4. Objects and Classes 8

4.1. Objects, Fields, Properties and Methods 9

4.2. Classes of Objects 9

4.3. The Dot “.” Operator 10

4.4. Object Variables and the New Clause 10

4.5. Copying Object Variables and Values 11

4.6. Objects as Procedure Arguments 12

4.7. User-Defined Classes 13

4.8. Limitations 15

5. Arithmetic Operations 16

5.1. Arithmetic Expressions 16

5.2. Arithmetic Functions and Methods 18

6. Strings and String Expressions 19

7. Assignment Statements 21

8. Control Structures 22

9. Procedures, Delegates and Modules 26

9.1. Subroutines and Functions 26

9.2. Delegates 27

9.3. Modules 30

10. Exception Handling 30

11. Motion and Controller Related Classes 33

11. Motion and Controller Related Classes 33

11.1. Signal Class 34

11.2. Location Class and Objects 34

11.3. Profile Class and Objects 38

11.4. Move Class 39

iv

Table Of Contents

11.5. RefFrame Class and Objects 41

11.6. Controller Class 44

11.7. Robot Class 45

11.8. Latch Class 47

12. Networking Communications 48

12. Networking Communications 48

12.1. Networking Definitions and Classes 49

12.2. TCP Server 51

12.3. TCP Client 52

12.4. UDP Server and Client 53

13. MODBUS/TCP Communications 56

13. MODBUS/TCP Communications 56

13.1. Modbus Class 57

13.2. Modbus Master Connection 58

13.3. Modbus Master Examples 58

14. File I/O, Serial I/O and Streams 59

14. File I/O, Serial I/O and Streams 59

14.1. Classes and Methods 60

14.2. File I/O 62

14.3. Serial I/O 63

14.4. Console Output 65

14.5. Non-Volatile Memory (NVRAM) 65

15. Vision Guidance 68

15. Vision Guidance 68

15.1. Classes and Methods 69

15.2. Vision Interface 71

15.3. Vision Procedure Example 72

16. Managing and Executing GPL Projects 72

17. Thread Control 74

17. Thread Control 74

17.1. Thread Synchronization 74

17.2. Thread Scheduling 74

17.3. The Thread Class 75

17.4. Thread-Safe Data Access in GPL 76

18. XML Data Exchange 78

18. XML Data Exchange 78

18.1. Document Object Model (DOM) 79

v

Guidance Programming Language

18.2. Character Representation 80

18.3. XmlDoc Class 80

18.4. XmlNode Class 81

18.5. Examples 82

18.6. Error Handling 84

19. Misc. Unsupported Features 85

vi

The Guidance Programming Language

1. GPL Overview
This document introduces you to the Guidance Programming Language, GPL. GPL is a full-featured
language designed to allow you to program and automatically operate motion controllers with machine
vision and the mechanical mechanisms (“robots”) that are controlled by these devices.

GPL can be employed in a wide variety of applications including: general robotics; mechanical assembly;
material handling and packaging; palletizing; carton loading or case packing; wafer handling or machine
control in the semiconductor industry; life sciences equipment applications; or applications requiring
conveyor tracking and/or vision guidance.

This language can be easily applied to a wide range of mechanisms ranging from simple, single axis
linear and rotary devices, to complex robots that require all of their axes to be simultaneously moved in a
coordinated Cartesian fashion, to systems that have multiple robots that operate either independently or
cooperatively. The control hardware for such systems can reside in a single box or can be distributed in a
networked control architecture. Independent of the physical control architecture, GPL makes use of its
built-in networking ability and knowledge of robot geometries (kinematics) to allow mechanisms to be
centrally programmed and easily controlled in Cartesian coordinates.

To support such a wide range of applications and mechanisms, GPL has extensive motion control
facilities including: blending of joint and Cartesian interpolated motions (“continuous path”); s-curve
profiles; base and tool offsets; built-in kinematic models for a variety of robots; mathematics for
manipulating robot and part positions and orientations; and frames of reference including moving frames
of references for conveyor tracking.

GPL has been targeted to execute on the Precise Automation Guidance Controller, which supports a
networked control architecture. This controller includes a web based operator interface, a unified
configuration and parameter database, integrated data logging capabilities, Category 3 (CAT-3) safety
circuitry, and a number of facilities that simplify both local and remote diagnostics and maintenance.

The Guidance Controller can in fact be programmed using three different methods: (1) a forms based
teach-and-repeat technique that executes “MotionBlocks” in response to digital input signals; (2) GPL as
described in this document; or (3) by any standard Windows PC language, which remotely controls the
system via a TCP/IP connection. The MotionBlocks method is ideal for simple applications, especially
those where a PLC is providing overall cell control, and is extremely easy-to-use since no programming
language knowledge is required. GPL has the advantage of being embedded within the controller and
allows more complex applications to be addressed while still permitting the controller to be operated in a
standalone mode. The TCP/IP method allows programmers to leverage the capabilities of a PC (or other
standard computing platforms) at runtime and to utilize the language of their choice.

In this document, we describe the features and syntax for the embedded system, the “Guidance
Programming Language” (GPL).

1

Guidance Programming Language

GPL is a full-featured programming language. The fundamental syntax for GPL has been modeled after
object-oriented forms of the Basic Language in order to provide a syntax and development environment
that are familiar to many application developers. The Basic syntax has been extensively augmented with
“classes” and “objects” that implement the motion control and vision capabilities. A Windows PC is
required to develop and debug application programs but need not be connected when the controller is
operating in automatic mode. Programmers who are familiar with Visual Basic .Net 2003 should be very
comfortable with many of the computational and structural elements of GPL.

In the following sections, an introduction and overview of the GPL syntax is provided. Where it is
important, we point out differences between GPL and the various variants of the Basic Language. These
notes are highlighted by enclosing them within square brackets (“[]”). For more detailed information on
individual instructions, objects and classes, methods, and properties, please see the GPL Dictionary
document.

2. Statement structure
2.1. Program lines can begin with an optional line label. Line labels must either be a valid variable
name (e.g. label1) or an integer literal (e.g. 100). Line labels must always be followed by a colon (:).
The label and colon can optionally be followed by a standard statement. [In VB6 and some other version
of Basic, no label separation character was required.]

2.2. The standard line is formatted as follows:

Label: Statement ' Comment

2.3. An apostrophe (') marks the beginning of a comment. Comments can follow a standard statement
on a line. Full line comments and blank lines are permitted.

2.4. Lines that begin with a # character are ignored. This is useful for defining "#Region" and "#End
Region" lines that mark blocks of code that can be expanded or collapsed using the outlining feature of an
editor.

2.5. Only one statement is permitted per line but a single statement can be continued on multiple lines.
To continue a line, the end of the line must contain a space character followed by an under bar (“ _”).
Comment lines cannot be continued and lines cannot be broken at certain points (e.g. in the middle of a
variable name).

2.6. There is no termination character at the end of a statement.

3. Data Type and Variables

3.1. Basic Data Types

3.1.1. The following table describes the basic data types that are supported in GPL:

Supported Data Types
Boolean True (<>0) or False (=0) values.

2

The Guidance Programming Language

Byte Unsigned 8-bit integer numbers ranging from 0 to 255 in value.
Short Signed 16-bit integer numbers.
Integer Signed 32-bit integer numbers.
Single 32 bit single precision floating point numbers.
Double 64 bit double precision floating point numbers.
String String variables can have values that are of arbitrary length

Object
Universal data types for object oriented Basic. Internally, this is a pointer to any
type of data or group of data. The group of data can consist of a mix of data
type values. All built-in system structures/classes are represented as objects.
See a later section for a general description of Objects.

3.1.2. The following data types found in VB.Net and VB6 are not supported:

Unsupported VB6/VB.Net Data Types
Long or Int64 64-bit signed integer number
Decimal 96-bit signed integer scaled by a power of 10
Int16 Synonym for Short
Int32 Synonym for Integer
Char 16-bit Unicode
Variant Old universal data type in VB6
Date Date and time values

3.1.3. Identifier type characters and literal type characters, which are special postfix characters used to
specify the type of variables and literal constants, are not supported. For example, in other systems,
725L identifies 725 as a Long constant and “Dim Abc!” declares Abc to be of type Single.

3.1.4. In general, the system automatically converts one type of variable to another as needed. For
example, all integer types (Boolean, Byte, Short, Integer) are automatically converted to double
precision floating point values when used in floating point expressions. However, when necessary, the
following explicit conversion functions can be utilized to force a specific type conversion. These functions
are all described in greater detail in the Software Reference Section.

Explicit Type Conversion Functions
CBool Converts any numeric type or String to Boolean.
CByte Converts any numeric type or String to Byte.
CDbl Converts any numeric type or String to Double.
CInt Converts any numeric type or String to Integer.
CShort Converts any numeric type or String to Short.
CSng Converts any numeric type or String to Single.
CStr Converts any numeric type to String.
Hex Converts an Integer value to String in Hexadecimal format.

3.1.5. All input characters are represented as 7-bit ASCII. Extended 8-bit ASCII and Unicode characters
are not accepted in symbol names or in string literals.

3.1.6. Hexadecimal constant values are indicated by the prefix “&H”. This syntax can cause confusion
with the “&” concatenation operator. For example, if you have a variable named “HEAD” then the
expression: String &HEAD causes a syntax error since &HEAD is interpreted as the hex value “EAD”. To
avoid this problem, insert a space after “&” if it is being used as a concatenation operator.

3.1.7. Octal constant values are indicated by the prefix “&O”. This syntax can causes confusion with the
“&” concatenation operator. For example, if you have a variable named “O2” then the expression: String

3

Guidance Programming Language

&O2 causes a syntax error since &O2 is interpreted as the octal value “2”. To avoid this problem, insert a
space after “&” if it is being used as a concatenation operator.

3.1.8. As a programming convenience, there are a number of constant values that are predefined in the
language. These constants all begin with "GPL_". These constants are listed in the following table and
their use is described in the language dictionary pages.

GPL Constant Values
GPL_CR ASCII carriage return character (13).
GPL_LF ASCII line feed character (10).
GPL_Righty Assert right shouldered configuration (&H01).
GPL_Lefty Assert left shouldered configuration (&H02).
GPL_Above Assert elbow above wrist configuration (&H04).
GPL_Below Assert elbow below wrist configuration (&H08).
GPL_Flip Assert wrist pitched up configuration (&H10).
GPL_NoFlip Assert wrist pitched down configuration (&H20).
GPL_Single Assert restrict wrist position to within +/- 180 degrees (&H1000).

3.2. Variable Declarations

3.2.1. Variable names can be mixed case (upper and lower case characters), but names are not case
sensitive, i.e. Abc, ABC, abc, aBC all refer to the same variable.

3.2.2. Within a given context, variable names must be unique even if they refer to variables of different
data types and variable names cannot match system keywords. For example, you cannot have a string
variable named “value1” and an integer variable with the same name. System keywords generally refer
to words such as “For”, “If”, “Dim” that are expected to denote a built-in language capability.

3.2.3. Variable names must start with either a letter or an underscore “_”. This character can be
followed by a sequence of up to 127 additional letters, numbers, and underscore characters for a total of
128. If a variable name starts with “_” it must be followed by at least one other character other than
another underscore to distinguish it from a line-continuation.

3.2.4. Dim is the basic data type declaration statement within procedures for local, i.e. automatic,
variables. If Static is used in place of Dim within a procedure, the value of the variable is preserved from
one execution of the procedure to the next. Dim variables, including array variables, are initialized to 0
(numbers), False (Booleans), or Nothing (structures, objects, or classes), each time their enclosing
procedure is executed.

Dim ii As Short
Static jj As Short

3.2.5. Variables defined within a module, outside of a procedure, are accessible by all procedures in the
module and, like Static variables, their values are preserved independently of the execution of any
procedure. If such variables are defined with Private or Dim, the variables are local to the module and
cannot be accessed by procedures in other modules. If Public is used instead to declare a variable, the
variable is accessible by all procedures within all modules loaded into the controller’s memory.

Module
 Dim Count As Integer ' Invisible to other modules,

Test

 ' global in this module
 Private nBlocks As Integer ' Same as declaration above
 Public TotalArea As Single ' Visible to all procedures in

4

The Guidance Programming Language

End Module
 ' all modules within project.

Variables declared within a module can also be accessed by preceding the variable name with the
module name. This method of specifying a variable is required for cases when the same Public variable
name is found in more than one module and it is unclear from the name alone which variable is being
referenced.

Module Test1
 Public aa As Integer
 Public bb As Integer
End Module

Module Test2
 Public aa As Integer
End Module

Module Test3
 Sub MyProc
 Dim ii As Integer
 ii = bb ' Okay since there is only bb
 ii = Test1.bb ' Okay but not necessary
 ii = aa ' Error since aa is duplicated
 ii = Test1.aa ' Okay since it is clear which aa
 End Sub
End Module

3.2.6. In GPL, no matter where a variable is declared in a procedure, the scope of a variable extends
throughout the procedure with the restriction that variables can only be declared in the outermost level of
a procedure.

For ii = To 1 10
Dim jj As Integer ' Not allowed
kk =
Next ii

 ii ' Forward reference to kk is allowed.

Dim kk As Integer

In the future, we may change the scoping rules to follow other variants of Basic, such as VB.NET, more
closely.

3.2.7. Multiple declaration clauses may appear in a single statement.

Dim n As Integer, x As Double

3.2.8. The data type must always be specified.

Dim BlackObject1 ' Invalid

3.2.9. If multiple variables are declared within a single statement and a variable’s type is not specified,
its type is defined by the next type definition in the statement [this is different from VB6 where all untyped
variables became Variants]. Note, if a New clause (see below) is used, only a single variable name may
appear to the left of the As keyword.

Dim ii, jj As Integer ' Both ii and jj are of type Integer

3.2.10. Variable or constant values may be initialized by adding an initialization clause that beings with
an “=”. For example,

5

Guidance Programming Language

Dim Count As Integer = 1 ' Sets Count to 1

Each time this statement is encountered during execution, its value is initialized. If an initializer clause is
used, only a single variable name may appear to the left of the As keyword.

An arbitrary expression may appear to the right of the “=”. If the variable being initialized is an object or
structure, a New keyword may appear to the right of the “=”.

Be careful if you call a user-defined function as part of the initializer expression since some variables may
not be initialized yet.

Module-level variables are initialized once when a project is started and are processed in the order in
which they appear in the module. They are initialized before any user-defined procedures are executed
(except in the case where you call a user-defined function from an initializer). Errors that occur while
initializing variables are listed as part of a hidden procedure named "_Init".

3.2.11. The New keyword may appear in a clause that declares an object or structure. The New may
appear immediately after the As keyword, or may appear immediately after the “=” in an initialization
clause. New may not appear in both places within the same statement.

Dim Loc1 As New Location ' Creates a location

Dim Loc1 As Location = New Location ' Equivalent to above

 ' class instance

3.2.12. A Const keyword indicates that the variable is read-only and cannot be changed during normal
execution. Only the initialization clause can set the value of the Const keyword.

Const MaxCount As Integer = 10
MaxCount = MaxCount+1 ' Invalid

3.2.13. GPL only supports strong typing, i.e. all variables must be declared in a Dim, Static, Private, or
Public statement although the specific type of a variable may be excluded and will be automatically set to
the default. [VB.Net allows strong typing to be disabled with the “Option Strict Off” statement.]

3.3. Data Type Arrays

Any of the data types described above, including objects, support array variables. The rank (dimension)
of an array can be from 1 to 4. The number of array elements within a dimension is limited by available
memory.

3.3.1. The first index in an array is always element 0. When you declare an array size, you are specifying
the upper bound for a dimension. So, the number of elements for a dimension is always equal to the
upper bound+1. For example:

Dim Count(9) As Integer ' Allocates array of 10 elements

Versions of Basic such as VB6 supported means for defined ranges of indices that started with an
arbitrary first index number (e.g. “10 to 20”) and also statements such as “Option Base 1” that forced the
first index to always be 1. However, VB.Net always starts arrays with index 0 and this is the convention
that is supported in GPL.

3.3.2. The Dim statement is used to declare an array variable. The supported forms of this statement are
as follows:

6

The Guidance Programming Language

Dim MyArray(3, As Integer 4)
Dim MyArray(,) As Integer

The first statement specifies a 2-dimensional array with 4 elements (0 to 3) in the first dimension and 5 (0
to 4) in the second, for a total of 20 elements. These elements are allocated when the Dim statement is
executed.

The second statement simply specifies a 2-dimensional array, but does not allocate any elements.
Before you can use the array, you must either assign an array to it, or you must use a ReDim statement
to allocate the elements.

When array elements are allocated, numeric arrays have the value 0 and object arrays have the value
Nothing. Initialization of array values using an “=” clause is not supported in GPL.

3.3.3. Once an array has been declared and its dimensionality established, the ReDim instruction can be
used to initialize or change the number of elements within any dimension. ReDim can be applied to any
array, so no distinction is made between dynamically sizeable arrays and fixed arrays. However, ReDim
cannot be used to change the rank of an array and ReDim cannot be used to initially declare an array.
Some examples of ReDim are as follows:

Dim Count() As Integer
ReDim Count(9)
Dim woDCount(2,3) As Integer T
ReDim TwoDCount(1,100)

3.3.4. Whole arrays may be assigned to each other with a single statement. When that occurs, the data
are not actually copied, but a pointer to the data in the right-hand array is copied to the left-hand array
variable so that both array variables access the same data. This behavior is similar to object variables.
For example:

Dim CountA(9) As Integer
Dim CountB() As Integer
CountB = CountA ' CountB now refers to the same
 ' data as CountA

3.3.5. When single array elements are passed as procedure arguments, they behave the same as non-
array variables of the same type. When whole array elements are passed as procedure arguments,
pointers to either the array value (ByVal) or the array variable (ByRef) are passed, and the behavior is
the same as when passing objects.

3.3.6. All arrays of variables are members of the built-in Array class. You can use properties of this class
to determine the properties of any variable array.

Property Description

array.GetUpperBound (dim)

Returns the upper bound for a particular dimension of an
array. The lower bound is always 0, so the total number
of elements in this dimension is one greater than the
upper bound.

array.Length The total number of elements in the entire array, in all
dimensions.

array.Rank Returns the rank, which is the number of dimensions, in
the array.

These property methods may only be used with an entire array, not with a subset or individual array
element.

7

Guidance Programming Language

Do not be confused when using the Length property with string arrays, for example, if you declare: Dim
sarray(3) As String:

sarray.Length is the number of elements in the array, in this case 4 (from 0 to 3).
sarray(0).Length is the length of the string contained in sarray(0), initially 0.

3.4. Scope of Names

Variables, constants, and procedures all have names. The section of a project where these names are
known is called the scope of the name. Attempts to access a name outside its scope results in an
"Undefined symbol" error because a valid name cannot be found by the compiler.

3.4.1. In general, a name is known within the block where it is declared, and within any blocks contained
in the block where it is declared. For example, a variable declared in a procedure is known only in that
procedure, but a variable declared in a module is known in all procedures contained in that module.

3.4.2. To access a name from outside the block where it is declared, the name must be declared as
Public. Public names can be accessed from anywhere, provided that the path to the name is fully
specified. As a special case, Public module-level names may be accessed without the module name
being specified, provided that the name is unambiguous in all modules.

For example:

Module MyMod
 Public ModVar As Integer
 Public Class My_class
 Public Shared MaxSize As Integer
 Private Shared Size2 As Integer
 End Class
End Module

Module GPL
 Public Sub Main
 My_class.MaxSize = 100 ' Invalid, path not complete
 MyMod.My_class.MaxSize = 100 ' Okay
 MyMod.My_class.Size2 = 100 ' Invalid, private variable
 ModVar = 20 ' Okay, special case
 End Sub
End Module

4. Objects and Classes

4. Objects and Classes

“Objects” and “classes” are the basis of object-oriented programming. A class defines a collection of
related data and the procedures that operate on the data. In a sense, a class can be thought of as a
template. If multiple copies (or “instances”) of a class are required to store distinct sets of data, multiple
objects of that class are created.

8

The Guidance Programming Language

Objects and classes are used within GPL to provide additional functionality that is not part of the standard
Basic Language and to organize functions that are related into easy-to-access groups. This functionality
includes: mathematical operations, I/O operations, motion specifications, and robot control.

This section describes the general concepts associated with objects and classes. For illustration
purposes, some of the objects and classes that are built into GPL are mentioned briefly in this section.
The detailed description of these built-in GPL objects and classes are provided in later sections.

4.1. Objects, Fields, Properties and Methods

An object is a collection of related data and the procedures that operate on the data.

As opposed to a traditional data array, objects can and normally do contain many different types of data.
For example, the GPL Location Object that represents robot and part positions contains an array of
Double values to store a position and orientation, an Integer value for special flag bits, a Boolean to
indicate a choice of reference frames, a pointer to another object, plus other data. The values stored
within an object are called “fields”. Generally, fields are accessed via “properties” of the object. The
properties provide read and write access to field values and allow the values to be formatted, processed
or grouped. Each field can have one, multiple, or no properties associated with it. For example, several
properties of the Location Object access the same position and orientation field data to allow the data to
be presented as individual axis positions or a set of all axes positions or a Cartesian position and
orientation depending upon how the Location is defined.

From a data point of view, objects are similar to C structures. However, in addition to grouping data,
objects also have specific procedures defined for operating on the object’s fields. These object-specific
procedures are called “methods”. For example, the Location Object has methods for inverting its
Cartesian position and for combining the positions of two Location Objects.

Depending upon how they are defined, some methods operate like subroutines while others return values
like functions. If a method returns a value, it can be used in any expression that is appropriate for the
type of its returned value. If a method operates like a subroutine, it must appear in a statement by itself
and cannot appear within an expression. Either type of method can have a list of required arguments in
the same manner as subroutines and functions.

More generally, fields, properties, and methods are referred to as “members” of an object or class. For
the most part, you should only need to concern yourself with properties and methods of objects.

4.2. Classes of Objects

A class is a formal description and template for a type of object and defines its fields, properties and
methods.

In general, there are two types of classes: non-global and global. A non-global class does not hold any
data and relies upon its objects for data storage. Each object for a given class will have the same types
of members but will contain an independent set of values for each member. For example, a typical robot
application will have multiple Location Objects. Each Location will store the data that describes a
specific part or robot position. However, all of the Location Objects will be derived from the same
Location Class and will have the same types of members.

A global class is like a non-global class in that it defines all of the fields, properties and methods
associated with this class. However, a global class is used when a single set or no set of data exists, so

9

Guidance Programming Language

that a global class never has any objects. For example, many of the arithmetic functions (e.g. sine,
cosine, square root) are part of the Math Class . This is done as a convenience to allow these functions
to be grouped together and therefore easily accessed. However, the Math Class has no fields, no
properties and no data, just methods. Consequently, the global Math Class has no objects.

4.3. The Dot “.” Operator

Within GPL, a period character “.”, also known as the dot operator, serves as a preface character to
identify a member of a class or an object. To access a specific member of an object or class, you would
write:

 object.member or class.member

For global classes, since there are no objects, only the “class.member” form of reference can be used.
For non-global classes, most references are to the values of objects and are written as “object.member”,
although the “class.member” form is permitted for certain methods.

By making use of the dot operator, properties of objects can be used in assignment statements and
expressions in exactly the same manner as you would employ any other variable of the same data type.
Also, the dot operator permits methods to be invoked in the same manner as you would invoke any
subroutine or function.

Some examples of the dot operator are as follows:

Dim Pos_x, Value As Double
Pos_x = location_object.X+2 ' Get x-axis displacement + 2
location_object.X = 3 ' Set x-axis displacement property
Value = Math.Sqrt(3) ' Sqrt is method of Math Class
location_object.Here ' Invoke method to record position

The dot operator can be used multiple times in succession if a property or method returns another object.
For example, the method that inverts a Location returns a Location value. Therefore, the following
could be written to first invert a Location and then extract the x-axis displacement of the result.

Pos_x = location_object.Inverse.X

4.4. Object Variables and the New Clause

While the members of an object can be treated like any other variable of the same data type, object
variables are quite different from other variables. That’s because an object variable does not contain the
value of the object, it contains a reference (or “pointer”) to the memory where the value is stored. For
example, if we declare a Location variable:

Dim My_loc As Location

This statement creates a pointer, My_loc, to an object of the Location Class. However, at this time, the
My_loc object variable has not allocated any storage for the value of the object and so its pointer is set to
“Nothing”. If you attempt to access a member of My_loc at this time, an error would be generated. In
general, before an object can be used, you must either allocate memory to the pointer (see below), copy
a pointer to an existing value or call a method that returns a value pointer.

10

The Guidance Programming Language

The standard way of creating (“allocating”) an object value is by using a New clause. This clause may
appear in a Dim statement or in an assignment statement and has the following syntax:

New class_name

where class_name is the name of the class for which you want to create an object value.

For example, the following three cases all declare a location object variable and allocate a Location
Object value for it.

Dim My_loc As New Location ' Create new location value
 r-
Dim My_loc As Location = New Location ' Same as above

 -o

 r-
Dim My_lo As Location ' Declares variable only

 -o
c

My_loc = New Location ' Creates the location value

In general, if you are unsure of whether to allocate a data block or not, you should probably go ahead and
allocate using the New clause. Using New unnecessarily will be somewhat less efficient, but GPL
automatically takes care of managing allocated object values and so memory is never lost (i.e. you
cannot create a memory “leak”).

4.5. Copying Object Variables and Values

Since an object variable is a pointer to a value, the following simple assignment statement does not copy
the value of an object, it copies an object pointer:

My_loc = Another_loc

At the conclusion of this instruction, My_loc and Another_loc both point to the same object value.
Furthermore, if My_loc was the only pointer to a different object value, that object value will have been
deleted (“deallocated”).

This use of pointers allows some sophisticated programming techniques, but it can also be confusing.
For example, after the assignment statement above, changing a property of either My_loc or Another_loc
will alter the property as seen by the other object. For example:

Dim My_Loc1 As New Location ' Create new location value
Dim As Location ' Does not create value My_Loc2
Dim tmp As Double
My_Loc1.X = 10
My_Loc2 = My_Loc1 ' Both Loc2 and Loc1 now
 ' have the same value pointer
tmp = My_Loc2.X ' tmp gets the value 10
My_Loc1.X = 20
tmp = My_Loc2.X ' tmp now gets the value 20

4.5.1. Clone Method

Many classes include a Clone method to create an exact copy of an object. The value of the Clone
method is a new object value that is the same as the referenced object. When this value is assigned to a
variable, it is independent of the original object value.

For example:

11

Guidance Programming Language

Dim My_Loc1 As New Location ' Create new location value
Dim My_Loc2 As Location ' Does not create value
Dim tmp As Double

My_Loc1.X = 10
My_Loc2 = My_Loc1.Clone ' Loc2 gets a copy of Loc1
tmp = My_Loc2.X ' tmp gets the value 10
My_Loc1.X = 20
tmp = My_Loc2.X ' tmp still gets the value 10

4.5.2. Nothing

The keyword Nothing is a built-in function that returns an object with no value. If you assign Nothing to
an object variable, its previous pointer is removed and any attempt to access the variable results in an
error. When an object variable is newly declared its value is Nothing unless a New clause was specified.

Assigning Nothing to an object variable releases the memory associated with the object value, provided it
is not being used elsewhere.

4.6. Objects as Procedure Arguments

Like other variables and values, object values may be passed as procedure arguments. Object values
are always passed as pointers, so the operation of ByVal and ByRef is a little different from that of other
arguments.

4.6.1. ByVal

When an object value is passed ByVal, a pointer to the object value is passed to the called procedure.
That means that changes made to the value via the called procedure parameter are seen by the caller.
But changes made to the variable are not seen by the caller.

For example:

Sub My_Sub (ByVal Loc As Location)
 Loc.X = 20 ' Changes original value
 Loc = New Location ' Create new value locally
 Loc.X = 30 ' Changes local value
End Sub

Sub Main()
 Dim Loc1 As New Location ' Create new location value
 Dim Loc2 As Location ' Does not create value
 Dim tmp As Double
 Loc2 = Loc1 ' Copy value pointer
 My_Sub (Loc1) ' Pass pointer to Loc1 value
 tmp = Loc1.X ' Gets 20 from original value
 tmp = Loc2.X ' Gets 20 from original value
End Sub

4.6.2. ByRef

When an object value is passed ByRef, a pointer to the object variable is passed to the called procedure.
That means that changes made to either the value or the variable via the called procedure parameter are
seen by the caller.

For example:

12

The Guidance Programming Language

Sub My_Sub (ByRef Loc As Location)
 Loc.X = 20 ' Changes original value
 Loc = New Location ' Caller variable changed
 Loc.X = 30 ' Changes new value
End Sub
Sub Main()
 Dim Loc1 As New Location ' Create new location value
 Dim Loc2 As Location ' Does not create value
 Dim tmp As Double
 Loc2 = Loc1 ' Copy value pointer
 My_Sub (Loc1) ' Pass pointer to Loc1 variable
 tmp = Loc1.X ' Gets 30 from new value
 tmp
End Sub

 = Loc2.X ' Gets 20 from original value

4.7. User-Defined Classes

In addition to using the built-in classes, users can define their own classes within GPL. User defined
classes are a very powerful feature that can be of assistance is organizing a GPL project. However, for
programmers that are not comfortable with object oriented programming, user defined classes do not
need to be used and this section can be skipped. More traditional arrays of numeric and string variables
are supported in GPL and can be utilized to implement a complete application.

A user class definition begins with a Class statement and ends with an End Class statement. A class
may be defined at the top level of a file, within a module, or within another class. User-defined classes
serve as a template for objects that contain arbitrary variable fields and are associated with procedures
that create and modify the objects.

Class variables, procedures, and nested classes can be declared as either Public or Private. By default
these items are all Private. A Private item may not be referenced outside of the class in which it is
declared. A Public item may be referenced outside of a class by using the syntax:
class_name.item_name or object_name.item_name.

4.7.1. Class Variables

By default, variables declared within a class are templates for fields within objects of that class.
Independent copies of these variables are found in each object of the class and do not exist outside of an
object. If a non-shared class variable has an initializer, that field is set to the initializer value whenever an
object is created.

If a class variable is declared Shared, only a single copy of the variable exists and is accessed
independently of any objects. A Public Shared variable is normally referenced by the syntax:
class_name.item_name, to emphasize that it is associated with the class and not the object. A Public
Shared variable may also be accessed by the syntax: object_name.item_name which results in the same
single value being referenced. The second syntax example should be avoided to prevent confusing it with
a non-shared variable. If a Shared class variable has an initializer clause, the initialization occurs once
when the main thread starts.

An internal Sub procedure named _Init is automatically generated to perform shared variable
initialization. An internal Sub procedure named _New is automatically created to perform initialization
when a new object is created. Do not attempt to create procedures with these names.

4.7.2. Class Procedures

Sub, Function, and Property procedures may all be members of a class. By default, procedures
declared within a class are associated with an object of that class. They are invoked by the syntax:

13

Guidance Programming Language

object_name.procedure_name. Within such procedures, fields and other procedures in the class may be
referenced without specifying object_name as a prefix. Instead, the object that was referenced when the
procedure was initially called is assumed.

If a class procedure is declared as Shared, it is not associated with any object, and may be invoked
simply as class_name.procedure_name. Since there is no object associated with this procedure, it cannot
reference non-shared fields or class procedures unless it explicitly includes an object_name as a prefix.

In the example below, the variable count is a field within the class cc. The procedure Main creates a new
object, aa, of class cc and sets its count field to 5. When the Inc_count procedure is called, it is passed
the object aa. When Inc_count executes, its references to count are actually references to the field count
within the passed aa object.

Public Class cc
 Public count As Integer ' Count is a field in a cc-class
obj
 Public Sub Increment
 count = count+1 ' Inc count field in the current
obj
 End Sub
End Class

Sub Main()
 Dim aa As New cc ' Creates a new object of class cc
 Dim bb As New cc ' Creates a new object of class cc
 aa.count = 5 ' Sets count field in the object aa
 aa.Increment ' Calls Sub Increment for object aa
 bb.count = 20 ' Sets the field count in object bb
 bb.Increment ' Calls Sub Increment for object bb
 Console.WriteLine(aa.count) ' Writes 6
 Console.WriteLine(bb.count) ' Writes 21
End Sub

Property procedures improve readability by allowing assignment statements to call procedures that get
and set data values. Reading a Property value is very similar to calling a function that returns a value.
Writing a Property value looks like an assignment statement. Read-only properties cannot be written,
and write-only properties cannot be read.

A Property definition must contain a get block (that begins with a Get statement and ends with an End
Get statement) or a set block (that begins with a Set statement and ends with an End Set statement) or
both. When a Property value is read, the get block procedure is executed. When a Property is written,
the set block procedure is executed.

In the example below, the Property Size is defined to get and set the internal field value size_in.
Additionally, the Set block clips the value to make sure that size_in is always in the range 0 to 10. Since
size_in is declared as Private, it cannot be changed directly from the Main procedure.

Public Class cc
 Private size_in ' si

 As Integer ze_in is field in cc-class
Public Property Size As Integer

 Return size_in ' Simply return the field value

Get

 End Get
 Set (value As Integer)
 If value > 10 Then
 value = 10
 ElseIf value < 0 Then
 value = 0
 End If
 size_in = value ' Set clipped value in field
 End Set

14

The Guidance Programming Language

 End Property
End Class

Sub Main()
 Dim aa As New cc ' Creates a new object of class cc
 Dim ii As Integer
 aa.Size = 20 ' Calls the Size Set Property
 ii = aa.Size ' Calls the Size Get Property
 Console.WriteLine(ii) ' Displays value 10
 aa.
End Sub

size_in = 5 ' Invalid since size_in is Private

4.7.3. Me Object

When a non-shared class procedure is called, it is automatically associated with an object. This object is
used implicitly whenever a non-shared procedure or field from the current class is referenced. This
associated object may be accessed directly by the built-in object Me. This object always has the type of
the current class. You can use the Me object when calling procedures that require an object as a
parameter. If you attempt to use Me in a shared procedure, or one not associated with a class, an
exception occurs.

4.7.4. Constructors

When an object is created with a New keyword, all fields in the new object are normally set to 0 (for
numeric fields), empty (for string fields), and undefined (for object fields).

If a Sub procedure named New is defined for a class, it is automatically called whenever a new object is
created. The New procedure may include an argument list. There may be multiple overloaded New
procedures, each with a different argument list.

For example:

Public Class cc
 Public nt As Integer ' Count is field in cc-class cou
 Public Sub New
 count = 25 ' Set count to 25
 End Sub
 Public Sub New (value As Integer)
 count = value
 End Sub
End Class

Sub Main()
 Dim aa As New cc ' Calls first New procedure
 Dim bb As New cc(15) ' Calls second New procedure
 Console.WriteLine(aa.count) ' Writes 25
 Console.WriteLine(bb.count) ' Writes 15
End Sub

4.8. Limitations

All objects in GPL must have an explicit class specified. You cannot simply declare a variable as type
Object. That means that late binding of objects is not supported.

15

Guidance Programming Language

5. Arithmetic Operations

5.1. Arithmetic Expressions

The following table documents the order in which elements of an arithmetic expression are evaluated (i.e.
the order of precedence). The operations are presented in their order of precedence starting with the
highest precedence, that is, those elements that are evaluated first. For operators that have an equal
precedence, elements are evaluated left-to-right. Parentheses can be used to change the order of
evaluation. Operations within parentheses are always evaluated before operations that are outside of the
parentheses.

Operation Symbol Notes

Exponentiation ^

Raises a value by a specified power. For
example “x ^ 3” cubes the value of x.
Powers have to be integer numbers if the
number being operated on is negative.
Otherwise, powers can have fractional
parts.

Unary negation -
This is a negative sign in front of a variable
or constant that does not indicate a
subtraction operation. For example, 2 * -4
is valid and produces a value of –8.

Multiplication/division *, /

This indicates the standard multiplication
and division operations. For division, even
if the divisor and the dividend are integer
values, the result is computed as a real
number with a fractional part.

Integer division \

This indicates an integer division
operation. Independent of the data type
for the divisor and dividend, the result is
truncated to an integer number. For
example, “2.3 \ 2” yields a value of 1.

Modulus calculation Mod

Computes the modulus of two numbers.
For “x Mod y”, this is equivalent to dividing
x by y and returning the remainder. For
example, “13.3 Mod 2” is equal to 1.3.

Addition/subtraction +, -

Standard addition and subtraction
operations. Automatically converts integer
values to floating point and computes the
result in floating point. If the value is
stored into an integer variable type, the
resulting answer is converted to integer
before storage.

String concatenation + or &

Either of the two symbols can be used to
indicate string concatenation. However,
the use of "&" is preferred in place of "+"
to clearly specify a string concatenation
operation instead of numerical addition.

Arithmetic bit shift <<, >>

These are arithmetic shift operations and
not bit rotations or logical shifts. For left
shifts, a 0 is always shifted into the low-
order bit. For right shifts, for positive
numbers a 0 is shifted into the high-order

16

The Guidance Programming Language

bit and a 1 is shifted in for negative
numbers.

Relational comparisons =, <>, <, >, <=,
>=, Is

The first six relational operator symbols
represent “equal to”, “not equal to”, “less
than”, “greater than”, “less than or equal
to”, and “greater than or equal to”. The
operands to the left and right of these
relational operators can either both be
numerical or string values. The Is
operator determines if two object
references refer to the same object. For
example "object1 Is Nothing".

Logical NOT Not Converts a False (=0) value to True (-1)
and any True (<>0) value to False (0).

Logical or bitwise AND And, AndAlso

Performs a logical AND operation unless
either of the operands is not a Boolean
value, in which case, a bitwise operation is
performed. All operands of And are
always evaluated even if an earlier
operand has already decided the result.
AndAlso prematurely stops evaluation if
the result is already False. The following
illustrates the logical AND operation:

True And True -> True
True And False -> False
False And True -> False
False And False -> False

Logical or bitwise OR Or, OrElse

Performs a logical OR operation unless
either of the operands is not a Boolean
value, in which case, a bitwise operation is
performed. All operands of Or are always
evaluated even if an earlier operand has
already decided the result. OrElse
prematurely stops evaluation if the result is
already True. The following illustrates the
logical OR operation:

True Or True -> True
True Or False -> True
False Or True -> True
False Or False -> False

Logical or bitwise XOR Xor

Performs a logical Exclusive Or operation
unless either of the operands is not a
Boolean value, in which case, a bitwise
operation is performed. The following
illustrates the logical XOR operation:

True Xor True -> False
True Xor False -> True
False Xor True -> True
False Xor False -> False

17

Guidance Programming Language

5.1.1. In general, most arithmetic expressions evaluation with GPL is performed in double precision
floating point. For example, when two numbers are added together, they are first converted to Double’s if
necessary and then the addition operation is performed. The results of expressions are converted to the
appropriate data types when a variable is assigned a value. Because of this, GPL generally executes
more quickly when variables are declared as Double’s than the other types of numeric values.

5.2. Arithmetic Functions and Methods

The following tables summarize the standard arithmetic and trigonometric operations that are provided in
GPL. As a convenience during editing, the operations within the first table are provided as methods of
the Math Class. This allows programmers to display a pick list of the Math methods and easily see all of
operations that are available. The second table documents functions that are not part of the Math Class.
These functions are provided in this manner for compatibility with other Basic Languages.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer, Single, Double, are
automatically performed as required. So, it is not necessary to have different variations on these
methods and functions to deal with the different possible mixes of input parameter data types. Also,
these methods and functions generally produce results that are formatted as Double’s. Results are
automatically converted to smaller data types as necessary, e.g. Double -> Integer, and will not generate
an error so long as numeric overflow does not occur.

For more information on these methods and functions, please see the Reference Documentation section.

Math Methods Description
Math.Abs(expression) Returns the absolute value of any arithmetic expression.

Math.Acos(cosine) Returns the angle that corresponds to a specified cosine
value.

Math.Asin(sine) Returns the angle that corresponds to a specified sine
value.

Math.Atan(tangent) Returns the angle that corresponds to a specified tangent
value.

Math.Atan2(sine_factor,
cosine_factor)

Returns the angle that corresponds to the quotient of two
values.

Math.Ceiling(value) Returns the smallest integer number that is greater than
or equal to a value.

Math.Cos(angle) Returns the cosine of a specified angle.
Math.Cosh(angle) Returns the hyperbolic cosine of a specified angle.
Math.E Returns the natural logarithmic base constant.

Math.Exp(exponent) Returns the natural logarithmic constant, e, raised to a
specified power.

Math.Floor(value) Returns the largest integer number that is less than or
equal to a value.

Math.Log(value) Returns the natural logarithm (base-e logarithm) of a
specified value.

Math.Log10(value) Returns the base-10 logarithm of a specified value.
Math.Max(value_1, value_2) Returns the larger of two values.
Math.Min(value_1, value_2) Returns the smaller of two values.
Math.PI Returns the constant π.

Math.Pow(base, exponent) Returns a specified base value raised to a specified
power.

Math.Sign(value) Returns a number that indicates the sign of a specified
value.

18

The Guidance Programming Language

Math.Sin(angle) Returns the sine of a specified angle.
Math.Sinh(angle) Returns the hyperbolic sine of a specified angle.
Math.Sqrt(value) Returns the square root of a value.
Math.Tan(angle) Returns the tangent of a specified angle.
Math.Tanh(angle) Returns the hyperbolic tangent of a specified angle.

Built-in Functions Description

Fix(number) Returns the integer portion of any numeric type by
truncating towards zero.

Int(number) Returns the integer portion of any numeric type by
truncating towards negative infinity.

Rnd(seed) Returns a pseudo random number.

6. Strings and String Expressions
String variables, assignment statements, and expressions provide the means for storing and
manipulating text within GPL. As such, Strings are also the primary means for transferring data in and
out of the system via the serial communications ports, the file system, and the Ethernet interface.

6.1. String variables store a series of ASCII characters and can be of arbitrary length. However, String
operations have been optimized to execute most efficiently on Strings that are 128 characters or less in
length.

6.2. String constants must be delimited by double quote marks, e.g. "Hello world", and can at most be
128 characters in length. To embed a double quote mark within a String constant, enter two double
quote marks in a row, e.g. "Tom said, ""Hello world""".

6.3. As with other variables, String arrays are supported and the values of procedure level String
variables can be initialized in DIM statements. For example,

Dim name As String = "Charlie"

6.4. A number of easy-to-use functions are provided for converting between String values and
numerical values, e.g. CStr, CDbl, CInt. Each of these built-in functions was described earlier in the
section on Basic Data Types.

As a convenience, GPL automatically converts a String value to a Double whenever a numerical value is
expected and a String is encountered instead. For example, the following statements are legal:

Dim a As Double
a = 2.34 + "1.01" ' Legal. a will be equal to 3.35

However, it is generally better practice to utilize the explicit conversion routines rather than relying upon
the automatic conversions. The automatic conversions can result in some computations whose results
may not be clear.

19

Guidance Programming Language

6.5. In most cases, when a String value is required as an input, a String expression can be provided. A
String expression can consist of a String variable, constant, function or method or a concatenation of
two or more of these String elements.

6.6. Two or more String elements can be concatenated together by utilizing the concatenation operator,
"&". Also, for compatibility with other Basic compilers, the "+" can alternatively be used to indicate
concatenation. However, given the automatic String to numeric conversion features of the language, the
use of the "+" can make it less obvious whether a statement is intended to produce a String or a numeric
result. Therefore, the use of the "&" concatenation operator is recommended over the "+".

The following is an example of String concatenation.

Dim s1, s2 As String
s1 = "Joe's"
s2 = s1 & " balance: " & CStr(10.2) ' s2 = "Joe's balance: 10.2"

6.7. Since String values are often generated by appending additional text on to the end of the value of a
String variable, for computational efficiency, the concatenation assignment operator is supported. For
example,

s1 &= " more" is equivalent to s1 = s1 & " more"

The advantage of the concatenation assignment operator is that appended text is directed added onto the
end of the variable's value. In the standard assignment statement, the value, s1, is copied to an
intermediate variable where it is concatenated with the appended String value, " more". The resulting
value then replaces the original value of the variable.

6.8. The values of two Strings can be compared using the String.Compare method. In addition,
Strings can be compared using the standard arithmetic relational comparison operators (=, <>, <, >, <=,
>=). Comparisons performed using the relational operators are always performed case sensitive, i.e. “A”
is not equal to “a”. This is equivalent to specifying “Option Compare Binary” in some Basic compilers. To
perform case insensitive comparisons, use the Compare method or force both String values to be upper
or lower case.

6.9. Internally, String variables are implemented using many of the same procedures as those that
apply to Objects. Consequently, many of the basic string manipulation operations are provided as
methods and properties that can be applied to String variables. However, unlike other built-in Objects,
when a String variable is created, it automatically has its data storage allocated. So, the use of the New
qualifier is not needed in connections with String variables and is not permitted.

The following table summarizes each of the String methods and properties.

Member Type Description

String.Compare Method Compares the values of two Strings in either a
case sensitive or case insensitive manner.

string.IndexOf Method
Searches for an exact match of a substring
within the string variable and returns the starting
position if found (0-n).

string.Length Property Returns the number of characters in the String.

string.Split Method
Divides the string variable value into a series of
substrings based upon a specified separator
character and returns the array of substrings.

string.Substring Method Returns a substring of the string variable starting

20

The Guidance Programming Language

at a specific character position and with a
specified length.

string.ToLower Method Returns a copy of the string with all lower case
characters.

string.ToUpper Method Returns a copy of the string with all upper case
characters.

string.Trim Method Trims off characters or white space from the
start and end of a String variable value.

string.TrimEnd Method Trims off characters or white space from the end
of a String variable value.

string.TrimStart Method Trims off characters or white space from the
start of a String variable value.

6.10. For compatibility with older Basic compilers, the following String functions are provided. In many
instances, very similar functionality is provided by the String Members listed in the previous table.

Built-in String Functions Description

Asc(string) Converts the first character of a String to its equivalent
ASCII numerical code.

Chr(expression) Given a numerical ASCII code, a String that consists of
the equivalent ASCII character code is returned.

Format(expression, format_s) Converts a numerical value to a String value based upon
a specified output format specification.

FromBitString (string, type,
big_endian)

Extracts a number that has been packed in its internal bit
format into a String and returns the value of the number.

Instr(start, string_t, string_s)
Searches for an exact match of a substring within a
String expression and returns the starting position if
found (1-n).

LCase(string) Returns a String value that has been converted to lower
case.

Len(string) Returns the number of characters in a String.

Mid(string, first, length)
Returns a substring of the string starting at the first
character position and consisting of length number of
characters.

ToBitString (expression, type,
big_endian)

Converts the value of an expression to a specific numeric
type and returns the internal bit representation of the
number packed into a String value.

UCase(string) Returns a String value that has been converted to upper
case.

7. Assignment Statements
The basic value assignment statements have the following form:

numeric_variable = arithmetic_expression ' Comment
 or
string_variable = string_expression ' Comment

where the arithmetic_expression can be arbitrarily complex and can consist of variable values and
functions inter-related by the arithmetic operations described in the previous section, and

21

Guidance Programming Language

string_expression can be a string variable, string function, string valued property, string constant or
concatenated string value.

7.1. For all arithmetic assignment statements, the result of the statement is always converted to the data
type of the variable being assigned the new value. For example:

Dim a, b As Single, c As Integer
a = 2.25 ' Assigned floating point value
b = 3.5 ' Assigned floating point value
c = a * b ' Result of 7.875 rounded and stored
as 8

7.2. In addition to the standard assignment statements (e.g. x=2), assignment operators are provided that
perform an operation on a variable value and store the result back into the variable value. For example:

 x *= 3 is equivalent to x = x * 3

The following table contains the list of assignment operators and their equivalents.

Assignment operator Sample Use Equivalent Code
^= Operator x ^= y x = x ^ y
*= Operator x *= y x = x * y
/= Operator x /= y x = x / y
\= Operator x \= y x = x \ y
+= Operator x += y x = x + y
-= Operator x -= y x = x – y

<<= Operator x <<= y x = x << y
>>= Operator x >>= y x = x >> y
&= Operator x &= y x = x & y

In addition to simplifying and clarifying complex program statements, the use of the assignment operators
can be more efficient especially when the variable or property that is being assigned the new value has a
complex array index or other specification or long string values are being concatenated. This is due to
the fact that the full variable or property specification only has to be evaluated once to obtain the memory
address of its value.

8. Control Structures
The statements described in this section alter the sequential execution of instructions within a procedure,
i.e. they alter the flow of control. For example, these statements conditionally execute blocks of
statements, repeatedly execute blocks of statements a fixed number of times or repeatedly execute
blocks of statements until a condition is satisfied.

8.1. GoTo Statements

This instruction executes an unconditional branch and continues execution at a specified labeled
statement.

GoTo label

22

The Guidance Programming Language

A label must either conform to the conventions for a variable name (e.g. label3) or an integer literal (e.g.
1000). To label an instruction, the label is placed first on the line followed by a colon (:) followed by any
standard instruction.

In general, GoTo instructions can make programs more difficult to understand. So, whenever possible,
other control structures should be used in place of GoTo’s.

8.2. If…Then…Else…End If Statements

This control structure tests one or more expressions and conditionally executes at most one block of
statements.

If condition Then
 if_statements
ElseIf elseif_condition Then
 elseif_statements
Else
 else_statements
End If

This control structure first tests the condition to determine if it is True (<>0) or False (=0). If True, the
if_statements are executed and the remainder of the statements down to the End If are skipped. If False,
the if_statements are skipped and the first ElseIf or Else, if present, is processed. If an ElseIf clause is
present, its elseif_condition is tested and, if True, the associated elseif_statements are executed after
which execution continues after the End If. Otherwise, the elseif_statements are skipped and the next
ElseIf or Else is processed. If all conditional tests fail and an Else is present, the else_statements are
executed.

8.2.1. An If…Then can contain several or no ElseIf clauses. If present, these must be specified before
the optional Else clause.

8.2.2. An If…Then can only contain a single optional Else clause.

8.2.3. Since True is defined to be <>0, any arithmetic expression that evaluates to <>0 will be
interpreted as a True condition.

8.2.4. For simple tests, this statement can be reduced to a single line format: If…Then statement.

8.3. For…Next Statements

This control structure executes a sequence of instructions a fixed number of times.

For variable = initial_value To final_value Step increment
 for_loop_statements
Next variable

This control structure begins by setting the variable to the initial_value. The variable can be any numeric
type, i.e.. Byte, Integer, Short, Single or Double. Array variables as well as object and structure fields
are also permitted. However, object and structure properties are not permitted.

If the initial_value does not exceed the final_value, the for_loop_statements are executed once.
However, if the initial_value exceeds the final_value, the for_loop_statements are skipped and execution
continues at the statement following the Next instruction. If the for_loop_statements are executed,
execution proceeds until the Next instruction is encounter. When the Next statement is executed, the

23

Guidance Programming Language

increment is added to the variable and its value is compared again to the final_value. So long as the
final_value is not exceeded, the for_loop_statements are executed again and the process is repeated.

8.3.1. The initial_value, final_value, and increment can all be arbitrarily complex arithmetic
expressions. However, these expressions are only evaluated when the For statement is executed and
their values are saved for use by the Next statement. Therefore, if the values of these expressions
change during the execution of the For loop it does not alter the saved values. Since these expression
are only evaluated once, the For loop is generally more efficient that other looping methods.

8.3.2. The increment value is optional can be positive or negative. If positive, looping terminates when
the variable’s value is greater than the final_value. If negative, looping terminates when the variable’s
value is less than the final_value. If not specified, a value of 1 is assumed.

8.3.3. The For loop can be prematurely terminated by executing an Exit For statement or a GoTo
statement that branches outside of the For loop.

8.4. While…End While Statements

This control structure tests a condition and, if True, executes a block of statements repeatedly until the
condition is False.

While test_expression
 while_statements
End While

This control structure begins by evaluating the test_expression. If the expression value is True (<>0), the
block of while_statements is executed. When the End While is encounter, the test_expression is
evaluated again. If the test_expression is still True, the while_statements are executed again. This
sequence is repeated so long as the test_expression remains True. As soon as the test_expression tests
False (=0), the while_statements are skipped and execution continues at the statement following the End
While.

8.4.1. If the test_expression is False when the While begins execution, the while_statements are
skipped and are not executed.

8.4.2. The While loop can be terminated before the conclusion of the while_statements by executing an
Exit While statement or a GoTo statement that branches outside of the While loop.

8.5. Do…Loop Statements

This control structure bounds a block of instructions that are repeatedly executed so long as a specified
expression evaluates to True or until the expression value becomes True.

Do While | Until condition
 statements
Loop
 -or-
Do
 statements
Loop While | Until condition

8.6. Select…Case…End Select Statements

This control structure executes one of several blocks of statements based upon matching a numeric or
String expression value. This control structure is similar to the If…Then...ElseIf statements in that a

24

The Guidance Programming Language

series of values are compared to determine the statements that are executed next. However, this control
structure is more efficient and convenient than a series of If statements if a single value is to be
compared to multiple possible values.

Select match_value
 Case test_expression,...,test_expression
 case_statements
 Case Else

End Select

else_statements

The match_value is evaluated once and then sequentially tested against each test_expression specified
in a series of Case statements. When a matching test_expression value is found, the associated
case_statements are executed. Following the execution of the appropriate case_statements, execution
continues at the statement following the End Select. If no test_expression is matched and a Case Else is
present, the else_statements are executed. If no test_expressionis is matched and a Case Else is not
defined, none of the case_statements are executed and execution continues after the End Select.

8.6.1. The match_value can be a general numeric or String expression and can evaluate to any of the
basic arithmetic data types (e.g. integer, real number, byte) or a String type.

8.6.2. Any number of Case statements can be included. Each Case statement can be followed by one
or more numeric or String test_expression’s.

8.6.3. Each Case test_expression must take one of the following forms:

8.6.3.1 . A general numeric expression, e.g. 2, a+b.

8.6.3.2. A general String expression, e.g. “blue”, stg1 & “ab”

8.6.4. If a test_expression does not match the data type of the match_value, the expression is
automatically converted to the appropriate type.

8.6.5. Some example Case statements are as follows:

Case 1, 3, 5, 7, 11 ' First prime numbers
Case "red", color2, "blue" & "green"

8.6.6. Executing an Exit Select instruction will skip the remaining statements within a group of
case_statements or else_statements. Execution continues at the instruction following the End Select.

8.7. Nested Control Structures

In general, control structures can be nested within each other to an arbitrary depth and in arbitrary
combinations. For example, a While loop can be embedded within another While loop or an If…Then
clause.

25

Guidance Programming Language

9. Procedures, Delegates and Modules

9.1. Subroutines and Functions

The language includes user-defined subroutine (Sub) and function (Function) procedures. Functions are
identical to subroutines except that a function returns a value and a call to a function can be included in
an arithmetic or string expression. Except as noted in this document, “procedure” or “routine” refer to
both user-defined procedures and functions.

9.1.1. Calling a Procedure

A Function or Sub may be invoked by placing its name as the first item in a statement or by using the
Call keyword. If a Function is invoked in this manner, the returned value of a Function is ignored. In
addition, a Function, but not a Sub, may be embedded in an expression whose type is consistent with
the type returned by the function.

When invoking either a Sub or a Function, parentheses must always be provided around the argument
list, with empty parenthesis supplied if there are no arguments. In VB6, parentheses are required if a Call
is used and forbidden if a Call is not included. In VB.Net, parentheses are only optional for empty
argument lists, although the Visual Studio.Net editor always inserts parentheses.

The following are some valid examples:

Call MyProcedure (1, 2, 3) ' ()always required for non-null args
MyProcedure (1, 2, 3) ' Call is optional
x = 2 * MyFunction (y)
MyFunction(y) ' Do not care about the value

9.1.2. Returning from a Procedure

When a procedure is executed, the procedure exits and returns control to the calling routine when one of
the following is encountered:

1. The end of the procedure, marked by an End Function or End Sub statement.
2. An Exit Function or Exit Sub statement, depending on the procedure type
3. A Return statement.

If the top-level procedure exits, execution of its thread is terminated.

The returned value of a Function is specified by either an expression argument to the Return statement
or by assigning a value to the function name as if it were a variable. For example:

Function Test ByVal x As Double) As Double (
 If x Then < 10
 Return x+1 ' Exits with a value of x+1
 Else
 Test = x+2 ' Sets the return value to x+2
 Exit Function ' Exits with the current return value
 End If
End Function

9.1.3. Procedure Arguments

26

The Guidance Programming Language

All arguments (including arrays and objects) can either be passed to a procedure by value (ByVal) or by
reference (ByRef).

For numeric, Boolean and String types, ByVal means that a copy of the value is made for the called
procedure. The called procedure may freely modify the argument variable without affecting the value in
the calling program. By default, all arguments are passed ByVal.

For numeric, Boolean and String types, ByRef means that a pointer to the variable containing the value
is passed to the called program. Only variables can be passed by reference. When the called procedure
modifies its argument variable, it is actually modifying the value in the calling program.

Passing objects ByVal and ByRef has some subtle differences. In both cases, accessing and modifying
members of the object have the same effect and change the same data. They are different for the case
when you assign directly to the procedure argument. In the ByVal case, you only change the pointer to
the value in the called procedure. In the ByRef case, you change the pointer to the value in the calling
procedure’s object variable.

9.1.4. Not Supported

The language does not support the GoSub statement. This statement allowed an arbitrary line within a
procedure to act as the start of a procedure embedded within a procedure. Also, the language does not
support declaring a procedure as Static. A Static procedure forced all of the local variables of a
procedure to be statically defined such that they retained their values between calls. Variables must be
individually specified as being Static.

GPL does not support Optional procedure arguments, initial argument values, or the ParamArray
keyword. It also does not support passing a Set or Get Property as a ByRef argument.

9.2. Delegates

"Delegates" are a means of indirectly calling a function or subroutine procedure through an object
variable. You can define a Delegate object and then associate a particular function or subroutine
procedure to it. The object can be passed between routines like any other object and finally the
associated procedure can be called.

Delegates may be used to efficiently call a procedure from a table of procedures, based on a numeric
index. They may also be used to pass a call-back procedure to a server process.

The Delegate statement creates a new named class that holds a template for the procedure to be called.
For example, the statement

Delegate Function My_template(ByVal arg1 As Integer) As String

creates a class with the name My_template that can be used to call Function procedures that accept a
single Integer argument by-value, and return a String value. This statement is only a declaration and
does not do anything except create the My_template class.

Suppose you have two functions:

Public Function f0 (ByVal mode As Integer) As String
:
End Function

27

Guidance Programming Language

Public Function f1 (ByVal mode As Integer) As String
:
End Function

You can create an array of Delegate objects that refer to these functions, using the template defined
earlier in the Delegate statement.

Dim del_obj(1) As My_template

del_obj(0) = New My_template(AddressOf f0)
del_obj(1) = New My_template(AddressOf f1)
 or
del_obj(0) = New My_template("f0")
del_obj(1) = New My_template("f1")

The function type and arguments for the functions f0 and f1 must match the defining Delegate statement
or a compiler error will be issued for by the New statements above.

If you have an index variable whose value is either 0 or 1, it can be used to select which of the two
functions is executed.

str = del_obj(index)(3) ' Call f0 or f1 with mode = 3

9.2.1. Delegate Statement

The Delegate statement creates a new class that serves as a template for any Delegate objects that are
associated with it. The Delegate statement’s procedure type (Sub or Function), the procedure argument
list, and the Function result type must match any procedures that are later associated with a Delegate
object of this class. You need to have a separate Delegate statement for each variation of procedure type
and argument list. A Delegate statement is similar to creating a new class with the name of the Delegate.
You cannot create a Delegate class for a property method.

For example, the statement

Delegate Function My_template(ByVal arg1 As Integer) As String

creates a class with the name My_template that can be used to call Function procedures that accept a
single Integer argument by-value, and return a String value.

9.2.2. Creating Delegate Objects

Like other objects, a Delegate object must be declared before it can be used. Objects of this type are just
like any other object and can be global, inside a class, or local in a procedure. A typical object variable
declaration is:

Dim del_obj As My_template

which creates an object variable del_obj that is an instance of the previously declared Delegate named
My_template. Before the object variable can be used, the actual object must be created with a New
procedure using the name of the procedure as a String, or using the AddressOf operator. For example:

del_obj = New My_template("f0")
 or
del_obj = New My_template(AddressOf f0)

28

The Guidance Programming Language

The parameter list and procedure type of f0 must match the template of the Delegate statement for
My_template.

To associate a Delegate object with a non-shared class procedure, you need to provide both the
procedure name and the object instance to the AddressOf operator. You cannot use a String in this
case. The Delegate object saves a pointer to the object instance along with the procedure. For example:

Class My_class
 :
 Public Function My_fn(ByVal mode As Integer) As String
 :

End Function
End Class

Public Sub Test
 Dim my_obj As New My_class ' Create an object from My_class
 Dim del_obj As My_template
 del_obj = New My_template(AddressOf my_obj.My_fn)
 ' At this point, del_obj refers to my_obj.My_fn
 Console.Writeline(del_obj(3)) ' Call my_obj.My_fn(3)
End Sub

9.2.3. AddressOf Operator

The AddressOf operator may be used in the constructor (New clause) when creating Delegate objects.
This operator finds the address of a procedure. If the procedure is a non-shared class procedure, it also
determines the object to be associated with the call. For example:

del_obj = New My_template(AddressOf global_function)

Associates del_obj with a global function that does not depend on any object.

del_obj = New My_template(AddressOf my_object.class_function)

Associates del_obj with the object referenced by my_object and the class member function
class_function. If del_obj is used later to invoke class_function, that function is called with the value of
my_object at the time that del_obj was instantiated.

9.2.4. AddressOf vs. String

When the AddressOf operator is used in a New clause, the compiler finds the name of the procedure
during compilation. When a String containing the procedure name is used in a New clause, the
procedure name must be found during execution of the procedure. So AddressOf is more efficient, but
the String argument is more flexible since a String variable can be used to associate different
procedures with the same Delegate object.

When a New clause contains a String variable, the procedure name must either be a module-level public
procedure, or a top-level class public shared procedure. The String variable must have one of the
following forms:

• procedure_name
• module_name.procedure_name
• class_name.procedure_name

29

Guidance Programming Language

9.3. Modules

A Module is a named section of code that begins with a Module statement an ends with an End Module
statement. Modules may contain variable declarations, procedures, and class definitions. Modules can
only appear at the top-level of a file. They cannot appear inside of other modules or classes.

9.3.1. Scope of Items within Modules

Modules provide a simple way to group variables, procedures, and classes, without concern about name
conflicts.

Module variables, procedures, and classes can be declared as either Public or Private. By default these
items are all Private. A Private item may not be referenced outside of the module in which it is declared.
A Public item may be referenced outside of a module by using the syntax: module_name.item_name. As
a special case, if item_name is unambiguous within all loaded modules, the module_name. may be
omitted.

All variables declared within a module (and not within a class or procedure) are implicitly Shared, so they
can be referenced within any procedure contained in the module. Consequently, only one copy of each
implicitly Shared variable value can exist. All references to the variable access the same value. If a
variable has any initializer clauses, the initialization occurs once when the main thread for the Module is
started. Const symbols behave the same as variables, except their values cannot be changed once they
are initialized.

9.3.2. Special Initialization Procedures

If a user Sub procedure named Init is defined within a module, it is executed as part of the module
initialization, before the startup procedure begins.

An internal Sub procedure named _Init is automatically generated to perform module-level initialization.
Do not attempt to create a procedure with this name.

10. Exception Handling
In automated systems, it is typically very important that the equipment be able to run unattended for long
periods of time. Since errors and other unexpected events periodically occur, it is critical that the system
be able to automatically field execution exceptions, attempt to correct the problem by responding in an
appropriate manner, and continue execution if at all possible. In GPL, sections of procedures or entire
procedures can be bounded by a Try...Catch...Finally...End Try structure that provides a formal means
to intercept program exceptions and execute specific corrective actions. When an exception is handled in
this manner, information on the type of exception is stored in an Exception Object.

10.1. Try...Catch...Finally...End Try Statements

In the group of instructions shown below, if an exception of any type occurs when the try_statements are
executed, rather than halting execution and reporting an error, the system automatically stores the
exception information in the exception_object and branches execution to the start of the
catch_statements. The catch_statements can test the exception_object to determine the nature of the
exception and then perform whatever corrective action is necessary. If the try_statements complete
execution without an error or when the catch_statements complete execution after an exception, the

30

The Guidance Programming Language

finally_statements are always executed to perform any required cleanup. At the completion of the
finally_statements, regular instruction execution continues at the first statement following the End Try.

Try
 try_statements
Catch exception_object
 catch_statements
Finally
 finally_statements
End Try

10.1.1. A Try structure must contain either a single Catch statement or a single Finally statement or
one of each type of statement. If a Catch statement is specified, it must always include an
exception_object.

10.1.2. Try structures can be nested within each other. For example, a Try structure can be contained
within the catch_statements of another, higher-level Try structure. Also, procedure calls can be
contained within any of the statement blocks including the try_statements. For example,

Public Sub MAIN
 Dim exc1 As New Exception
 Try
 test()
 Console.WriteLine("Test completed") ' Never gets here
 Catch exc1
 Console.WriteLine("Exception!") ' Is executed

End Try
End Sub

Public Sub test()
 Dim ii As Integer
 ii = 1 / 0 ' Generates exception
 Console.WriteLine("Inside Test") ' Never gets here
End Sub

In this sample code, the only output will be "Exception!". This is because the divide by 0 in test generates
an exception, which terminates execution of test. If the call to test in the MAIN routine was not embedded
within a Try, the system would normally halt the execution of the thread and report the error. Since the
call is within a Try block that has a Catch, execution is instead continued at the first instruction within the
Catch block. This feature permits exceptions that occur within arbitrary depths of procedure calls to be
fielded by a single Try structure.

10.1.3 A Try structure with a Finally instruction and no Catch instruction is only useful in a called
procedure when a higher-level calling procedure contains a Try structure with a Catch. When an
exception occurs in the try_statements of a called procedure with no Catch, the finally_statements are
executed before the procedure exits to the higher-level procedure that contains the Catch statement. In
the example above, if the divide by 0 statement was part of a Try block that was followed by a Finally
block, the statements in the Finally block would have been executed prior to returning to the MAIN
routine.

10.1.4 There are special limitations on the use of GoTo instructions in connection with Try structures. A
GoTo contained in the catch_statements can branch execution into the corresponding try_statements.
Also, GoTo's can be contained in the try_statements, catch_statements, and the finally_statements so
long as the branch is to an instruction within the same block of statements. All other branching into and
out of the Try statement blocks and the main code is not permitted, e.g. you cannot branch from outside
of a Try structure into the try_statements or out of the try_statements into the finally_statements. For
example,

31

Guidance Programming Language

 Dim exc1 As New Exception
 Try
retry:
 Move.Loc(loc1, profile1)
 Move.WaitForEOM
 Catch exc1
 If (exc1.ErrorCode = -153) Then
 profile1.Speed *= .9
 GoTo retry ' LEGAL BRANCH
 End If
 GoTo bad_jump ' ILLEGAL!!!
 End Try
bad_jump:

10.1.5 If an Exit Try statement is executed in either the try_statements or the catch_statements,
execution branches and continues at the first statement in the finally_statements. Exit Try instructions
are not permitted in the finally_statements.

10.2. Throw Statement

The Throw statement can be used to force an exception within a program at any time. The syntax for this
instruction is as follows:

Throw exception_object

In addition to forcing an exception to halt program execution, the Throw statement is often used within a
catch_statements block to force an exception to be processed by a higher-level Try structure.

10.3. Exception Class and Objects

Whenever an exception occurs, the data that defines the specific type of exception is stored and passed
in Exception Objects. There are two basic types of Exceptions: robot Exceptions and general
Exceptions. Both forms have a numeric property that indicates the basic type of error. In addition, the
robot Exceptions contain information on the robot and axis that is associated with the Exception. The
general Exceptions contain an error code qualifier in place of the robot and axis information.

As with other types of Objects, Exception Objects are defined with a Dim statement or as an argument
to a procedure. When an Exception Object is first created, normally the New token is used to allocate
the data section for the Object.

All of the properties and methods for the Exception Objects are described in detail in the Reference
Documentation section. The following table briefly summarizes this information.

Member Type Description

exception_obj.Axis Property
Sets and gets a bit mask indicating the
robot axes associated with a robot
Exception.

exception_obj.Clone Method Method that returns a copy of the
exception_obj.

exception_obj.ErrorCode Property Sets and gets the number of the error
message.

exception_obj.Message Method
Returns the full text string that is
generated based upon the exception_obj
properties.

exception_obj.Qualifier Property Sets and gets the error message qualifier
for a general Exception.

32

The Guidance Programming Language

exception_obj.RobotError Property
Sets and gets the Boolean that indicates
if an Exception is a robot or general
type.

exception_obj.RobotNum Property Sets and gets the number of the robot
associated with a robot Exception.

exception_obj.UpdateErrorCode Method
Updates a general (vague) Exception
error code with a more specific error
code.

11. Motion and Controller Related Classes

11. Motion and Controller Related Classes

In the previous sections, the features of GPL that were described closely mimic those that are found in
other object orientation variants of the Basic Language. Those features included arithmetic expression
representations, control structures, variable types and declarations, mathematical functions, etc.

In the next sections, the features of GPL that have been added specifically to provide built-in motion
control facilities are described. Consistent with the philosophy of object-oriented languages, these
special features are provided as properties and methods of built-in “Classes”. In some cases, the
Classes are global system classes that simply serve to group features together as an aid in accessing
and understanding these facilities. For global Classes there is a single copy of the Class. The Math
Class that was described earlier is a good example of a global system class. In other cases, the classes
have multiple instances (objects) that allow programs to have multiple copies of the objects, each with
their own independent set of values for properties and methods. For example, in a Visual Basic program,
the “Textbox” is a good example of the use of objects. An application can have multiple Textboxes each
with different colors and sizes and other visual effects. In a motion application, robot locations are
represented as objects to allow an application to store multiple robot and object positions, each with its
own special properties.

The following table describes the motion control specific classes that are included in GPL. Each of these
classes is discussed in more detail in the following sections.

Motion Control Class Description

Signal Class (Global) Reads and writes digital, analog and other simple means
of input and output

Location Class and Objects Defines positions and orientations of the robot and objects

Profile Class and Objects Defines sets of parameters that specify the trajectory to be
followed when moving between Locations.

Move Class (Global) Provides the basic methods for executing a motion
between Locations using Profiles.

RefFrame Class and Objects
Defines robot and part reference frames that can
automatically alter the total (absolute) positions and
orientations of Locations.

Controller Class (Global)
Provides access to general facilities provided by the
motion control hardware such as power control, timers,
etc.

Robot Class (Global) Provides access to the attributes and properties of each
robot such as their current position and homing methods.

33

Guidance Programming Language

For many simple pick and place operations, only the first four basic classes need be utilized, i.e. the
Signal, Location, Profile, and Move Classes. The facilities provided by the more advanced Classes
(RefFrame, Controller, and Robot) can be brought into play as an individual becomes more familiar with
the system or as applications become more complex.

11.1. Signal Class

The global Signal Class provides access to the hardware features of the Guidance Control System that
allow GPL programs to interface to other equipment in the work cell using common, simple techniques.
These interfaces include “digital input and output (I/O)” signals and “analog I/O” signals. Digital and
analog I/O signals permit GPL programs to coordinate the operation of the robot with other equipment
using go/no-go semaphores and to interface to various simple sensors.

These hardware interfaces serve as global resources to all threads and are therefore represented by a
global class. To access these interfaces, it is not necessary to create an instance of the class; you can
refer to the Signal Class directly. For example, to read the value of the first digital I/O signal you could
execute the following:

Dim signal_state As Boolean
signal_state = Signal.DIO(1)

All of the properties and methods for the Signal Class are described in detail in the Reference
Documentation section. The following table briefly summarizes this information.

Member Type Description

Signal.AIO Property Sets and gets the values of the analog input and
output channels.

Signal.DIO Property Sets and gets the values of the digital input and
output channels.

11.2. Location Class and Objects

The Location Class and its instances (“Location Objects” or just “Locations”) are the fundamental
means for specifying robot and part positions and orientations in GPL. Each Location Object contains
data that defines: a position and orientation; special robot configuration information specific to the
geometry of the robot to be used; and clearance data that define a safe position by which the Location
can be approached.

11.2.1. There are two basic types of Location Objects: Cartesian Locations and Angles Locations.

11.2.1.1. A Cartesian Location stores a robot or part position and orientation in Cartesian
coordinates. That is, positions and orientations are represented as X, Y, and Z displacements and
rotations in a Cartesian coordinate system.

This is a very intuitive representation and has the advantage of representing positions and orientations in
a manner that is independent of a robot’s geometry. When a Cartesian Location is specified as a
destination for a robot motion, the system automatically utilizes its built-in knowledge of the robot’s
geometry (i.e. its kinematics) to convert this Cartesian position into an equivalent set of robot axes
positions. Furthermore, if the kinematic model of the robot includes corrections for manufacturing
tolerances (e.g. non-perpendicularity of axes, deviations in link lengths), the Cartesian Locations will be
automatically corrected for these variances.

34

The Guidance Programming Language

In addition to containing a position and orientation, a Cartesian Location also has an optional pointer to
a reference frame object (RefFrame). If RefFrame is specified, the Cartesian position and orientation is
understood to be relative to the reference frame. When such a Location is specified as a destination for
a robot motion, GPL automatically combines the Cartesian Location’s position and orientation with the
reference frame to compute the absolute coordinates for the robot’s destination.

The use of relative coordinates and reference frames is a very powerful technique since it allows related
positions and orientations to be moved as a group. For example, all of the IC chips on a PC board or all
of the sample tubes in a tray can be defined relative to a reference frame. If the PC board or the tray is
misaligned, the position and orientation of the reference frame can be updated and the absolute values of
all of the associated Locations will automatically be corrected as well.

For even greater flexibility, a reference frame can itself be defined relative to another reference frame.

11.2.1.2. An Angles Location stores a robot position as a set of axes position values. This is the
traditional method of representing robot locations and was utilized extensively prior to the introduction of
kinematic models. It consists of one axis position value for each degree-of-freedom of the robot.

This method has the benefit of fully and uniquely defining a position of a robot. However, there are
several disadvantages of this method relative to the Cartesian representation. For one, if the robot has
serial linkages or rotary axes for determining the position of the tool, it is often difficult to intuitively
determine how to change the axes positions to effect a desired change in the position or orientation of the
robot’s tool. Secondly, the use of axes positions makes application programs non-portable between
robots with different geometries or even the same geometry but different sizes. Finally, while this
representation is sufficient for describing the position and orientation or a robot, it cannot be easily used
to define arbitrary positions and orientations of parts and part relationships within the workspace.

The storage of axes positions has been included for completeness and does have its uses. However, it is
recommended that Cartesian Locations be applied whenever possible.

11.2.1.3. In order to distinguish the type of data stored in a Location, a “Type” property is provided.
This indicates if the object is an Angles Location or a Cartesian Location. If the Location is a
Cartesian type, it can also have an optional pointer to a RefFrame Object.

11.2.2. For most common operations that require the position and orientation of a Location Object, the
data of interest is referred to the “total position” or “position” of the Location. The “total position” or
“position” is synonymous with the following:

11.2.2.1. For Cartesian Locations without a reference frame, the position and orientation stored in the
Location.

11.2.2.2. For Cartesian Locations with a reference frame, the combination of the position and
orientation stored in the Location with the position and orientation of its reference frame.

11.2.2.3. For Angles Locations, the stored axes positions.

11.2.3. For some computations, it is convenient to access the Cartesian position and orientation stored in
a Cartesian Location while ignoring the optional reference frame. To distinguish this value from the
“total position”, this data is referred to as the Location’s “position with respect to the reference frame”
(PosWrtRef) whether or not a reference frame is specified. The PosWrtRef property is not meaningful
for Angles Locations.

35

Guidance Programming Language

11.2.4. Throughout GPL, Cartesian positions and orientations are internally stored as a sparse 4 by 4
matrix called a “homogeneous transformation”. This matrix represents the three positional degrees-of-
freedom and the three rotational degrees-of-freedom needed to fully specify a robot or part position and
orientation in Cartesian coordinates. Homogeneous transforms have several computational advantages
and are used to store the “total position” of Cartesian Locations, PosWrtRef values, reference frames
positions and orientations, and during Cartesian Location position and orientation computations.
However, while this representation has computational benefits, entering the values for the elements of a 4
by 4 homogeneous transformation matrix is not very convenient.

To simplify data entry, transformation values are converted to X, Y, and Z position displacement
components and three “Euler angles”. The three Euler angles consist of a rotation about the Z-axis,
followed by a rotation about the new Y-axis, followed by a rotation about the new Z-axis. This set of
displacements and angles is often referred to as X, Y, Z, Yaw, Pitch, and Roll. In general terms, if you
are standing up straight and looking at the horizon, the Yaw angle is the amount that you rotate to look
left and right along the horizon. The Pitch angle defines if you subsequently tilt your head to look up into
the sky or down into the ground. The Roll angle defines a final rotation of your head about its new vertical
axis. The X, Y, and Z values are in units of millimeters and the Yaw, Pitch, and Roll are in units of
degrees.

11.2.5. Since flexible automation must be able to alter a robot’s actions in order to accommodate process
variations, one of the most important features of the GPL system is the ability to efficiently and easily
mathematically manipulate position and orientation data. In the case of Angles Locations, this capability
is limited to providing the ability to change individual axes position values. However, for Cartesian
Locations, a much more powerful mathematics is provided.

As mentioned above, each Cartesian Location can have a reference frame or series of reference frames
associated with it. These reference frames can not only translate but also rotate the base coordinate
system in which the positions are defined. This allows arbitrary 6 degree-of-freedom adjustments to be
applied to correct for part and process tolerances and variations.

More generally, GPL includes several methods that can be used to combine the positions and
orientations of Cartesian Locations and reference frames. Reference frames are a super-set of
Cartesian Locations. So, in the following paragraphs, the comments concerning Locations apply to
reference frames as well.

When we combine multiple Location positions and orientations, it is easiest to think of Location Objects
as representing a change in position and orientation with respect to a coordinate system, which in turn
defines a new coordinate system. So, if we have a Location A, A can be thought of as defining a new
coordinate system relative to its base coordinate system. If we combine A with a second Location B, the
change in position and orientation of B is interpreted with respect to the new coordinate system defined
by A. If a third Location C is added, the combination of A, B, and C can be computed by interpreting the
change in position and orientation of C with respect to the coordinate system generated by combining A
and B.

As a specific example, let’s consider the simple case without rotations where Location A has a X, Y, Z
value of (10,25,-40) and Location B has a X, Y, Z value of (0,5,0). If we now combined the values, B’s
incremental displacement of 5 mm along its Y-axis should be interpreted with respect to A’s prior
translations. The combined result would be (10,30,-40). Now, we can see what happens if we change A
so it includes a 90-degree rotation about its Z-axis (10,25,-40,0,0,90). In this case, when we combine the
two values, B’s base Y-axis has been rotated to point along the negative X-axis of A’s base coordinate
system. So, the resulting combination would be (5,25,-40,0,0,90).

In addition to combining Locations, we can also eliminate the effects of Locations by computing the
“inverse” of a Location. An inverse negates the change in position and orientation of a Location. When

36

The Guidance Programming Language

we combine these negative results with other computations in the proper order, we can unwind Location
computations.

The Location Class and its Object include not only basic properties, but also extensive methods for
mathematically manipulating the positions and orientations contained with these objects. All of these
properties and methods are described in detail in the Reference Documentation section and are briefly
summarized in the following table.

Member Type Description

location_obj.Angle Property Sets and gets a single axis position for an
Angles Location.

location_obj.Angles Method Changes all of the axes positions values in
an Angles Location.

location_obj.Clone Method Returns a copy of the location_obj.

location_obj.Config Property Sets and gets the bit flags that specify special
robot specific location attributes.

location_obj.ConveyorLimit Method

Returns the distance that a Location, which
is defined relative to a conveyor reference
frame, is from the operating limits of the
conveyor.

Location.Distance Method Returns the distance between the XYZ
positions of two Cartesian Locations.

location_obj.Here Method
Modifies the “total position” of the
location_obj to be equal to the current
location of a robot.

location_obj.Here3 Method
Defines the "total position" of location_obj
based upon the XYZ coordinates of three
specified locations.

location_obj.Inverse Method Returns the inverse of the “total position” of
the Cartesian location_obj.

location_obj.Kinesol Method
Returns a Cartesian Location equivalent to
an Angles Location for a specific kinematic
model or vise versa.

location_obj.Mul Method
Returns the result of combining the “total
position” of location_obj with the “total
position” of another Cartesian Location.

location_obj.Normalize Method
Corrects the value of the PosWrtRef of a
Cartesian Location for any mathematical
inconsistencies in the value.

location_obj.Pitch Property Sets and gets the Pitch angle of the
PosWrtRef of a Cartesian Location.

location_obj.Pos Property Sets and gets the “total position” of the
location_obj.

location_obj.PosWrtRef Property Sets and gets the PosWrtRef of a Cartesian
Location.

location_obj.Roll Property Sets and gets the Roll angle of the
PosWrtRef of a Cartesian Location.

location_obj.Text Property
Sets and gets a String value not used by
GPL. Available for general use by
applications.

location_obj.Type Property Sets and gets the Type specification.

location_obj.X Property Sets and gets the X position value of the
PosWrtRef of a Cartesian Location.

37

Guidance Programming Language

location_obj.XYZ Method
Changes the X, Y, Z, Yaw, Pitch, and Roll
values of the PosWrtRef of a Cartesian
Location.

location_obj.XYZInc Method Increments the X, Y, and Z values of the
PosWrtRef of a Cartesian Location.

Location.XYZValue Method
Returns a Cartesian Location with a "total
position" equal to specified X, Y, Z, Yaw,
Pitch, and Roll coordinates.

location_obj.Y Property Sets and gets the Y position value of the
PosWrtRef of a Cartesian Location.

location_obj.Yaw Property Sets and gets the Yaw angle of the
PosWrtRef of a Cartesian Location.

location_obj.Z Property Sets and gets the Z position value of the
PosWrtRef of a Cartesian Location.

location_obj.ZClearance Property
Sets and gets the distance along the Z-axis
that defines the safe approach position to the
Location.

location_obj.ZWorld Property
Sets and gets the flag that indicates if the
approach distance is measured along the
Tool or World Z coordinate axis.

11.3. Profile Class and Objects

In order to move the robot in the standard position control mode, a program must specify the destination
for the motion and some trajectory parameters. The trajectory parameters include values that specify
how fast the robot is to move and what type of path the robot should traverse. As previously described,
Location Objects are utilized to specify robot and part positions and orientations. In GPL, the trajectory
parameters are captured in Objects that are instances of the Profile Class.

A Profile Object defines a motion’s peak speed, peak acceleration and deceleration, s-curve profile
parameters, type of path (i.e. straight line or interpolated in joint angles), and a constraint specification
used to define if the robot should stop at the end of the motion and when the robot is close enough to the
final destination to be considered “in position”.

While a program can have a unique Profile Object for each motion, it is often desirable to create several,
generic Profile Objects that can be repeatedly used throughout a project for similar types of motions.
For example, you might create one Profile for retracting the robot, a second Profile for moving the robot
at high speeds between intermediate (via) points, and a third Profile for final positioning of parts. The
repeated use of generic profiles often simplifies performance tuning an application.

All of the properties and methods for the Profile Class are described in detail in the Reference
Documentation section. The following table briefly summarizes this information.

Member Type Description

profile_obj.Speed Property
Sets and gets the peak motion speed
specified as a percentage of the nominal
speed.

profile_obj.Speed2 Property

Sets and gets the secondary peak motion
speed specification as a percentage of their
nominal speeds for selected axes during
Cartesian motions.

profile_obj.Accel Property Sets and gets the peak motion acceleration

38

The Guidance Programming Language

specified as a percentage of the nominal
acceleration.

profile_obj.Decel Property
Sets and gets the peak motion deceleration
specified as a percentage of the nominal
deceleration.

profile_obj.AccelRamp Property Sets and gets the duration for ramping up to
the peak acceleration, specified in seconds.

profile_obj.DecelRamp Property Sets and gets the duration for ramping up to
the peak deceleration, specified in seconds.

profile_obj.Straight Property Sets and gets the Boolean indicating if the
robot is to follow a straight-line path.

profile_obj.InRange Property

Sets and gets the constraint value that
specifies if the robot should be stopped at the
end of the motion and when the robot is close
enough to the final destination to be
considered at its final position.

profile_obj.Text Property
Sets and gets a String value not used by
GPL. Available for general use by
applications.

profile_obj.Clone Method Method that returns a copy of the profile_obj.

11.4. Move Class

The global Move Class provides the methods for commanding the robot to perform a motion. The most
fundamental position-controlled motion method is:

Move.Loc (Location1, Profile1).

This executes a single motion segment and moves the robot to the absolute position and orientation
specified by Location1 using the performance parameters specified by Profile1. More complex, multi-
segment motions can be constructed by executing several Move methods in rapid succession. If desired,
the system will automatically blend motion segments together into a single “continuous path” that
executes several segments in succession before bringing the robot to a stop. This method can
significantly improve cycle times of even simple applications. Each motion segment can either move the
robot’s tool tip along a Cartesian straight-line path, a circular interpolated path or a joint-interpolated
path. Straight-line and circular paths are made possible by the installation of “kinematic modules” that
provide GPL with a knowledge of the robot’s geometry.

As an ease-of-use feature, several Move methods are provided for defining the destination of a motion.
For example, methods are provided for specifying if the robot is to move directly to a destination, move to
the clearance position of a destination, move relative to the previous destination, or move a single axis.

In addition to position-controlled motions, the system also supports velocity and torque controlled
motions.

In order for a robot motion to be executed, the following conditions must be satisfied:

1. High power for the amplifiers and motors must be enabled (see
Controller.PowerEnabled).

2. The motors must be commutated. This normally happens automatically and is
performed during the PowerEnable or the homing sequence.

39

Guidance Programming Language

3. In the standard case where the robot is to be position controlled, the robot axes
must be homed each time the controller is restarted (see Robot.HomeAll).
Homing reestablishes the zero position for each axes so that the robot can
repeat a previously taught motion.

4. The robot must be attached to the thread (see Robot.Attached). Attaching
ensures that only a single thread can issue motion commands to a robot.

For general information on the system’s motion control capabilities, please see the introductory section on
“Motion Control”.

All of the methods for the Move Class are described in detail in the Reference Documentation section.
The following table briefly summarizes this information.

Member Type Description

Move.Approach Method Moves to the clearance position for a
specified Location.

Move.Arc Method Moves the tool tip of the robot along an arc
path defined by three Locations.

Move.Circle Method Moves the tool tip of the robot around a
complete circle defined by three Locations.

Move.Delay Method Pauses execution of motions for a specified
period of time, in seconds.

Move.Extra Method Moves extra, independent axes during the
next motion to a Cartesian Location.

Move.ForceOverlap Method

Bypasses the system's normal motion
blending features and defines how the
execution of two sequential motions are to be
overlapped. Can also automatically limit the
rounding of corners between sequential
Cartesian motions.

Move.Loc Method Basic instruction to move to a specified
destination Location.

Move.OneAxis Method Convenience method to move a single axis of
a robot.

Move.Rel Method Moves to a Location that is relative to the
destination of the previous motion.

Move.SetJogCommand Method Sets or changes the specific mode, axis and
speed during jog (manual) control mode.

Move.SetRealTimeMod Method
Sets the changes in position and orientation
for the Real-time Trajectory Modification
mode.

Move.SetSpeeds Method Sets new target speeds and accelerations for
all axes during velocity control mode.

Move.SetTorques Method Sets new target torque output levels for all
motors in torque control mode.

Move.StartJogMode Method Initiates execution of jog (manual) control
mode.

Move.StartRealTimeMod Method
Initiates a trajectory mode that permits a GPL
program to dynamically modify a planned path
while the path is being executed.

Move.StartSpeedDAC Method Starts / stops automatic control of an analog
output based upon a robot's tool tip speed.

Move.StartTorqueCntrl Method Initiates execution of torque control mode for
one or more motors.

40

The Guidance Programming Language

Move.StartVelocityCntrl Method Switches all axes of a robot to velocity control
mode in place of position control mode.

Move.StopSpecialModes Method Terminates execution of any active special
trajectory control modes.

Move.Trigger Method

Primes the system to automatically assert a
digital output signal or a thread event at a
prescribed trigger position during the next or
current motion.

Move.WaitForEOM Method Pauses GPL program execution until the
current motion is completed.

11.5. RefFrame Class and Objects

The Objects of the RefFrame Class define robot and part reference frames. As previously described,
one or more Cartesian Locations can be defined relative to a RefFrame. If the position or orientation of
the RefFrame is subsequently modified, the absolute (or “total) position and orientation of all associated
Cartesian Locations are automatically adjusted and will move with the reference frame.

For example, a RefFrame Object, tray_ref, can be created that defines the position and orientation of a
tray of parts. The Location of each part on the tray can then be defined with respect to tray_ref. If the tray
and its parts move in unison, the position and orientation of tray_ref can be updated and the total position
of all of the part Locations will be automatically adjusted and move with the reference frame.

In addition to defining a Location with respect to a RefFrame, a RefFrame can be defined with respect
to another RefFrame. In the example above, if an array of trays is organized into a two dimensional grid,
a second “pallet” RefFrame, pallet_ref, can be defined to represent the grid of trays. tray_ref can then be
defined with respect to pallet_ref. Each time the pallet_ref is advanced to the next tray, the tray_ref
position will be modified as well as all of the part Locations that are defined with respect to tray_ref.

To define a Location with respect to a reference frame, you simply refer to the reference frame via the
RefFrame property of a Cartesian Location. For example,

Dim part1 As New Location ' part1 defaults to Cartesian Loc
Dim tr As New RefFrame ay_ref
part1.RefFrame = tray_ref ' part1 defined wrt tray_ref

To simplify the use of reference frames, several different types of RefFrames exist and more will be
added in the future. The common members of all RefFrame Objects are summarized in the following
table. For detailed information on these members and those of the specific types of reference frames,
please consult the GPL Dictionary Pages.

Member Type Description
refframe_obj.Type Property Sets and gets the type of the reference frame.

refframe_obj.Loc Property

Sets and gets the Location Object that is an
integral part of the reference frame. The use of
Loc varies for different types of reference
frames although Loc.RefFrame always
defines the next reference frame if
RefFrame_obj is itself relative to another
reference frame.

41

Guidance Programming Language

refframe_obj.Pos Method
Returns the absolute (“total”) position and
orientation for any type of reference frame
object.

refframe_obj.PosWrtRef Method
Returns the position for any type of reference
frame while ignoring any further reference
frames.

refframe_obj.Text Property Sets and gets a String value not used by GPL.
Available for general use by applications.

11.5.1. Basic Reference Frame

The basic type of RefFrame simply stores the position and orientation of the reference frame in the Loc
Location. The Loc.Pos property defines the position and orientation of the reference frame. The GPL
project is responsible for defining and updating the Loc.Pos value to reflect the current reference frame
value.

Dim loc1 As New Location ' loc1 set to Cartesian Loc
Dim ref1 As New RefFrame
loc1.RefFrame = ref1 ' loc1 with respect to ref1
ref1.Loc.XYZ(10,20,30,0,180,20) ' Set ref1 Pos

In order to define a basic reference frame with respect to another reference frame, the Loc.RefFrame
value must reference the next reference frame.

For a basic reference frame, it is possible to use Loc.Pos and Loc.PosWrtRef to read the total position
and relative position of the reference frame. However, it is generally a better practice to read the Pos and
PosWrtRef of the RefFrame instead. RefFrame_obj.Pos and RefFrame_obj.PosWrtRef will return the
current values for any type of RefFrame.

The RefFrame members that have special meaning for the basic type of reference frame are briefly
described in the table below.

Member Type Description
refframe_obj.Type Property Set to 0 to indicate a basic reference frame.

refframe_obj.Loc Property
Loc.Pos is set equal to the position and
orientation of the reference frame by a GPL
procedure.

11.5.2. Pallet Reference Frame

A pallet reference frame defines a one, two, or three-dimensional rectangular grid of positions that are
sequentially indexed. For example, this type of reference frame can be utilized to represent a row of parts
being feed, an array of test samples organized into a two dimensional grid or a three dimension pallet of
shipping boxes. Once a pallet RefFrame has been defined, you can advance to the next position in the
pallet by simply invoking the pallet’s “PalletNextPos” method.

The position of the first item (i.e. index 1,1,1) is defined by the X, Y, and Z displacements of Loc. The
directions of the X, Y, and Z axes of Loc define the direction for each row, column, and layer of the pallet,
respectively.

The distance between each item in a row, column, or layer is defined by the “PalletPitch” in each
dimension. The maximum number of elements in each row, column, or layer can also be specified.
Setting the maximum index to 1 indicates that this corresponding dimension is not incremented.

42

The Guidance Programming Language

The order in which GPL indexes along rows, columns, and layers can also be specified. For example,
when PalletNextPos is executed, the default is to step along the row first, then along columns, and finally
to the next layer. However, you can change the order to any combination. So, you could step by layers
first, rows second, and then columns if you so choose.

In addition to using PalletNextPos to increment to the next pallet element, the pallet element can be
directly specified by the PalletIndex property or the PalletRowColLay method. When a pallet indexes
beyond the final element, it automatically wraps back to the first element.

The RefFrame members that have special meaning for the pallet type of reference frame are briefly
described in the table below.

Member Type Description

refframe_obj.Type Property Set to 1 to indicate a pallet reference
frame.

refframe_obj.Loc Property

Loc.X, Y, and Z define the position of the
first row, column and layer. The orientation
of the X, Y, and Z axes of Loc define the
direction for each row, column, and layer
respectively.

refframe_obj.PalletIndex Property
Sets and gets the index for the next
position along the pallet row, column, or
layer (1 to n).

refframe_obj.PalletMaxIndex Property
Sets and gets the maximum position index
along the pallet row, column, or layer (1 to
n).

refframe_obj.PalletNextPos Method Advances to the next pallet position.

refframe_obj.PalletOrder Property
Sets and gets the parameter that specifies
the order in which PlalletNextPos indexes
along the row, column, and layer indices.

refframe_obj.PalletPitch Property Sets and gets the step size for advancing
along each row, column, or layer.

refframe_obj.PalletRowColLay Method Sets the next pallet position row, column,
and layer indices in a single instruction.

11.5.3. Conveyor Reference Frame

Conveyor Tracking is a software option that permits Locations to be defined relative to a conveyor belt.
When the robot moves to such positions, the system automatically adjusts the robot's motions to account
for the actual position and speed of the belt. For example, this option allows an application that picks
parts from one conveyor and places them on a second conveyor to be taught when the conveyors are
stationary. Then, during the actual execution, the program will be automatically adjusted by the system to
perform the same operation even when the conveyors are moving.

From a programming point of view, conveyor reference frames provide the means for implementing a
conveyor tracking program. For each conveyor belt, one or more conveyor RefFrame objects must be
defined. Each such object specifies the conveyor that is being referenced and provides the data need by
the system to evaluate the instantaneous position of the belt.

The Pos value of a conveyor reference frame always yields the instantaneous position of a conveyor and
its X-axis always points along the nominal direction of travel of the belt. Any Location that is defined with
respect to a conveyor RefFrame automatically moves with the conveyor belt.

43

Guidance Programming Language

The RefFrame members that are defined for a conveyor reference frame are described in the following
table. For more information on the Conveyor Tracking option, please see the Controller Software >
Introduction to the Software > Motion Control > Conveyor Tracking section of the Precise
Documentation Library.

Member Type Description

refframe_obj.Type Property Set to 2 to indicate a conveyor reference
frame.

refframe_obj.Loc Property
Not used. Conveyor reference frames
cannot be defined with respect to any
other reference frame.

refframe_obj.PosWrtRef Method
Returns the position of the "nominal"
transformation for the associated conveyor
robot.

refframe_obj.ConveyorOffset Property Sets or gets the property that specifies the
zero position of the conveyor belt's encoder.

refframe_obj.ConveyorRobot Property

Sets or gets the property that specifies the
robot module that is interfaced to the belt
encoder and contains the data that defines
the conveyor.

11.6. Controller Class

The global Controller Class provides a means for GPL programs to access a number of system wide
features and facilities of the Guidance Controller System, e.g. High Power control, E-Stop logic,
Configuration Database values, etc. These capabilities are represented as properties and methods of the
Controller Class. Since this class is global, it does not have any properties or fields that have values
that are local to a specific routine or program scope. So, the Controller Class can be referenced directly
without the need for creating instances of Controller Objects. For example, to enable high power to the
amplifies for non-Category 3 (CAT-3) safe systems, the following GPL statement could be used:

Controller.PowerEnabled = True

In this instruction, “Controller” refers to the global Controller Class and “EnablePower” is a property of
this class. Likewise, if we wish to test if high power is currently enabled, the following instructions could
be utilized:

If (Controller.PowerEnabled) Then

End If

 :

Of special interest are the SystemMessage, ShowDialog and ShowDialogMCP methods of this class.
These methods allow GPL programs to easily output information to the operator and prompt for simple
responses. For the first two methods, the output and input appear on the web page that displays the
Operator Control Panel. For the third method, the output and input are performed via the Precise
Hardware Manual Control Pendant. In the following example, text is output to the system message log
displayed on the Operator Control Panel and then displays a pop-up to prompt for a "Yes" or "No"
answer.

Dim button As Integer
Controller.SystemMessage("Sample output to Operator Control Panel")
Controller.ShowDialog("Yes,No","Do you like this pop-up?", button)
Controller.SystemMessage("Operator pressed button " & CStr(button))

44

The Guidance Programming Language

All of the properties and methods for the Controller Class are discussed in detail in the Reference
Documentation section. The following table briefly summarizes the members of the class.

Member Type Description

Controller.Command Method Executes a console command and returns
any output as a String value.

Controller.ErrorLog Property Returns an entry from the system Error Log
as a String value or clears the Error Log.

Controller.Load Method Loads a GPL project into memory and
compiles it in preparation for execution.

Controller.PDb Property Sets and gets any accessible value in the
configuration parameter database.

Controller.PDbNum Property
Optimized means to set and get numeric
values in the configuration parameter
database.

Controller.PowerEnabled Property
Sends a request to either turn on or off high
(motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerState Property Returns the current state of the high power
sequence.

Controller.RecordButton Property
Sets and gets the latched Boolean value
that indicates if the hardware MCP RECORD
button has been pressed.

Controller.ShowDialog Method Displays a pop-up dialog box on the web
Operator Control Panel.

Controller.ShowDialogMCP Method
Displays a pop-up dialog box on the LCD
display of the Precise Hardware Manual
Control Pendant.

Controller.SleepTick Method
Delays further execution of a thread for a
specified number of Trajectory Generator
periods.

Controller.SoftEStop Property Sets and gets the Boolean flag that triggers
a Soft E-Stop.

Controller.SystemMessage Method
Enters a message into the GPL system
message log that is displayed on the web
Operator Control Panel.

Controller.SystemSpeed Property Sets and gets the property that can reduce
the speed of all robot motions.

Controller.Tick Property Returns the execution repetition period for
the Trajectory Generator.

Controller.Timer Property Returns the value of the controller’s
microsecond clock in units of seconds.

Controller.Unload Method Unloads an idle GPL project from memory.

11.7. Robot Class

The global Robot Class provides a means for GPL programs to access functions and properties specific
to each robot configured in the system. The Robot is provided as a global class to simplify its access
since many systems have only a single robot and many applications are written to access and control the
robot from a single thread. Since this class is global, it does not have any properties or fields that have

45

Guidance Programming Language

values that are local to a specific routine or program scope. So, the Robot Class can be referenced
directly without the need for creating instances of Robot Objects.

The Robot Class provides properties and methods for reading the current position of a robot, initiating a
homing sequence from a program, forcing a rapid deceleration of any in-process motion, retrieving data
from the trajectory generator for the robot, setting and getting the robot’s base and tool offsets, etc.

The most important operations of the Robot Class are to associate a specific robot with a specific thread
and to give exclusive control of a robot to a thread. Most read-only robot operations require that a
statement either explicitly specify a robot or have a previously Selected robot. For example, to read the
current position of a robot, the Selected robot will be accessed if no robot is specified. On the other
hand, in order to control or move a robot, a thread must first be Attached to a robot in order to gain
exclusive access to it. Typically, if a project is intended to control a robot, the GPL software development
environment can be configured to automatically generate the statements to ensure the robot will be
Attached at the start of program execution and un-Attached when the program is terminated or pauses
execution.

All of the properties and methods for the Robot Class are discussed in detail in the Reference
Documentation section. The following table briefly summarizes the members of the class.

Member Type Description

Robot.Attached Property Sets and gets the number of the robot that is
exclusively controlled by a thread.

Robot.Base Property Sets and gets the position and orientation
offset for the base of the robot.

Robot.CartMode Property
Gets an Integer that contains flag bits that
indicate if any special Cartesian trajectory
modes are active.

Robot.Custom Property
Sets and gets elements of a parameter array
whose interpretation is specific to each
kinematic module.

Robot.DefLinComp Method
Defines internal table of motor encoder
"Linearity compensation" correction values that
are automatically applied to encoder values.

Robot.Dest Property Gets the Cartesian Location that is the final
destination for the previously executed motion.

Robot.DestAngles Property Gets the Angles Location that is the final
destination for the previously execution motion.

Robot.Home Method Homes the Attached robot to establish the
reference positions for each axes.

Robot.HomeAll Method Homes all robots to establish the reference
positions for each of their axes.

Robot.JointToMotor Method
Converts an array of axis joint angles (in
degrees or millimeters) to an equivalent array
of motor positions (in encoder counts).

Robot.LastProfile Property

Returns a Profile Object whose properties are
equal to those of the currently executing motion
or the last executed motion if no motion is
active.

Robot.MotorTempStatus Property Returns a code that indicates the temperature
status of a motor.

Robot.MotorToJoint Method
Converts an array of motor positions (in
encoder counts) to an equivalent array of axis
joint angles (in degrees or millimeters).

46

The Guidance Programming Language

Robot.Payload Property
Asserts or retrieves the last asserted value that
specifies the mass of the payload being carried
by the robot.

Robot.RapidDecel Property
Sets the Boolean flag that forces any in-
process motion for a robot to be rapidly
decelerated to a stop.

Robot.RealTimeModAcm Property

Returns a Cartesian Location whose value is
equal to the accumulated modifications
generated by the Real-time Trajectory
Modification mode.

Robot.RestartBase Property
Gets the position and orientation offset for the
base of the robot that was set when the
controller was restarted.

Robot.RestartTool Property
Gets the position and orientation offset for the
tool or gripper of the robot that was set when
the controller was restarted.

Robot.Selected Property
Sets and gets the number of the robot that will
be accessed for read-only operations by
default.

Robot.Source Property
Returns a Cartesian Location whose value is
equal to the initial position and orientation of
the previously executed motion.

Robot.SourceAngles Property
Returns an Angles Location whose value is
equal to the initial axes positions of the
previously executed motion.

Robot.SpeedAngles Property
Returns an Angles Location whose
components contain the instantaneous speed
of each axis.

Robot.Tool Property Sets and gets the position and orientation
offset for the tool or gripper of the robot.

Robot.TrajState Property
Gets the Integer that indicates the current
state of the trajectory generator for a given
robot.

Robot.Where Property
Gets a Cartesian Location whose value
indicates the current position and orientation of
a robot.

Robot.WhereAngles Property
Gets an Angles Location whose value
indicates the current position of each axes of a
robot.

11.8. Latch Class

The global Latch Class provides a means for GPL procedures to receive the results of latches generated
by digital input signals configured to trigger latching. These latch results allow a robot or belt position to
be captured with high accuracy when a digital input value changes.

The Latch Class defines Latch Objects that contain the time when the latch occurred and the robot axis
positions at that time. This class includes methods and properties for accessing the queue of latch
results, and for accessing the data in the results themselves.

Each robot has a single independent queue of latch result objects, generated when a configured latch
signal changes state. The queue is kept in order of time, with the oldest events first. Conveyor belts are a

47

Guidance Programming Language

special case of robots, normally configured as "encoder only" robots. Multiple belts or robots may be
latched independently.

For a general discussion of Latches, please see the Controller Software > Introduction To The
Software > Communications > Digital Inputs and Outputs > Latch Inputs section of the Precise
Documentation Library.

The methods for this class are summarized below:

Member Type Description

latch_object.Angle Property Returns the latched value of the specified axis
angle. Avoids creating a Location object.

Latch.Count Shared
Property

Returns the number of latch results pending
for a robot or conveyor belt.

latch_object.ErrorCode Property Returns the error code from a latch object. 0
means no error.

Latch.Flush Shared
Method

Flushes all latch results pending for a robot or
conveyor belt.

latch_object.Location Method
Returns a Location object containing the
latched position, as a Cartesian value or a set
of angles.

Latch.Result Shared
Method

Removes the next latch result from the queue
for a robot or belt and returns it as a Latch
object. Returns Nothing if the queue is empty.
Throws an exception if a result was lost due to
an overflow.

latch_object.Signal Property Returns the number of the digital input signal
that generated the latch.

Latch.ThreadEvent Shared
Property

Associates a thread event with a robot or belt.
The thread event gets set if the latch queue
contains latch results or when new latch
results are added.

latch_object.Timestamp Property
Returns the timestamp when the latch
occurred as a Double value, consistent with
the Controller.Timer property.

12. Networking Communications

12. Networking Communications

The following pages explain how to communicate across the Ethernet network using GPL. They provide a
summary of the classes involved and examples of how to use them. For additional details on specific
methods and properties, see the GPL Dictionary.

GPL includes a number of built-in classes to allow network communications between GPL and other
systems using TCP or UDP. They are similar to classes found in Visual Basic, and use concepts from
Unix and Linux network stacks. These pages are not intended to be a complete tutorial on network
communications, but should provide sufficient information for simple applications.

48

The Guidance Programming Language

12.1. Networking Definitions and Classes

The table below summarizes the terms and abbreviations used by the network software and this
documentation:

Concept Description

Client

A TCP or UDP Endpoint. A TCP Client connects to a Server and then issues
requests to that Server. Normally a TCP Client does not receive data except in
response to a request. A UDP Client sends to and receives from other UDP
clients.

Datagram A unit of data that includes source and destination Endpoint information.

Endpoint The source or destination for a datagram normally specified as an IP Address
and Port.

IP Internet Protocol - A low-level datagram protocol that is the basis for both TCP
and UDP.

IP Address
A 32-bit number that identifies a particular network and computer on that
network. Normally written as four decimal numbers, each of which range from 0
to 255, separated by periods. For example: 192.168.0.1

Port
A number from 0 to 65536 that identifies a process or protocol on a networked
computer. Some ports are pre-assigned to particular protocols. For example,
port 21 is normally used by a FTP server.

Server

A TCP Endpoint that accepts connections from a Client and services requests
from a Client. Normally a Server does not initiate I/O but simply responds to
requests. A UDP-based server uses the same methods as a client since there is
no connection established.

Socket An Object that holds connection information for network I/O. Various methods
associate Endpoints with Sockets.

TCP
Transmission Control Protocol - A connection-based protocol that sends reliable
Datagrams between Client and Server Endpoints. Messages are guaranteed to
be delivered in order.

UDP
User Datagram Protocol – A connection-less protocol that sends Datagrams
between two endpoints, without any guarantee of delivery or ordering. UDP is
generally faster than TCP, but not as reliable.

GPL supports TCP Server and Client connections, as well as sending or receiving UDP datagrams. The
table below summarizes the classes for network I/O.

Networking Class Description
IPEndPoint Objects of this class describe IP Endpoints.

Socket
Objects of this class correspond to local network
Endpoints. Most network I/O operations are methods of
the Socket class.

TcpClient Objects of this class correspond to TCP Clients that can
request connections to a TCP Server.

TcpListener Objects of this class correspond to TCP Servers that can
accept connection requests from TCP clients.

UdpClient Objects of this class correspond to UDP Endpoints. They
can exchange UDP Datagrams with other UDP Endpoints.

The tables below summarize the methods and properties for each of the classes. Each of these
properties and methods is described in detail in the GPL Dictionary contained in the Software Reference
section of the Precise Documentation Library.

49

Guidance Programming Language

IPEndPoint Member Type Description

New IPEndPoint Constructor
Method

Creates an Endpoint and allows the IP Address
and Port to be specified.

ipendpoint_obj.IPAddress Property Sets or gets the IP Address of an Endpoint.
ipendpoint_obj.Port Property Sets or gets the Port of an Endpoint.

Socket Member Type Description

socket_obj.Available Property Gets the number of data bytes currently
available to receive from a Socket.

socket_obj.Blocking Property
Sets or gets the blocking mode for a Socket. If
True, the Socket blocks. If False, it does not
block.

socket_obj.Close Method Closes any connections associated with a
Socket.

socket_obj.Connect Method Requests a TCP Client connection with a remote
TCP Server.

socket_obj.KeepAlive Property
Sets or gets the flag that controls whether a
keep-alive message is automatically transmitted
over the current TCP connection.

socket_obj.Receive Method Receives a datagram from an open TCP
connection.

socket_obj.ReceiveFrom Method Receives a datagram from an open UDP
connection.

socket_obj.ReceiveTimeout Property Sets or gets the receive timeout, in milliseconds,
for a Socket.

socket_obj.RemoteEndPoint Property Gets information about the remote end point of a
TCP connection.

socket_obj.Send Method Sends a datagram on an open TCP connection.

socket_obj.SendTimeout Property Sets or gets the send timeout, in milliseconds,
for a Socket.

socket_obj.SendTo Method Sends a datagram to an open UDP connection.

TcpClient Member Type Description

New TcpClient Constructor
Method

Creates an Object for a TCP Client and
optionally requests a connection.

tcpclient_obj.Client Method Returns the embedded Socket for performing
I/O.

tcpclient_obj.Close Method Closes a Client Socket and breaks any
connection.

TcpListener Member Type Description

New TcpListener Constructor
Method

Creates an Object for a TCP Server to listen for
connections.

tcplistener_obj.AcceptSocket Method Accepts a connection and returns a new Socket
Object for use by the TCP Server.

50

The Guidance Programming Language

tcplistener_obj.Close Method Stops listening and closes the listener Socket.

tcplistener_obj.Pending Property True if there is a pending connection and
AcceptSocket will succeed. Otherwise False.

tcplistener_obj.Start Method Starts listening for connection requests.

tcplistener_obj.Stop Method Stops listening and closes the listener Socket.
Same as Close method.

UdpClient Member Type Description

New UdpClient Constructor
Method Creates an Object for I/O using UDP.

udpclient_obj.Client Method Returns the embedded Socket for performing
I/O.

udpclient_obj.Close Method Closes a Socket.

All network-related I/O is performed using Socket Objects. TcpClient, TcpListener, and UdpClient
Objects contain internal Socket Objects that are created by their constructors or methods. These
Socket Objects are returned by the methods tcpclient_object.Client, tcplistener_object.AcceptSocket,
and udpclient_object.Client. It is not useful to create a Socket object using New.

12.2. TCP Server

A TCP server is a process that listens for connection requests and sets up connections with remote TCP
clients. The remote clients send requests to the server on the connection and receive responses. When
the connection is no longer needed, it is closed. The steps for setting up a TCP server are:

1. Create an IPEndPoint Object for the local endpoint. This Object should leave
the IP Address blank, allowing any remote node to connect, but set the port to a
specific number that the remote client knows.

2. Create a TcpListener Object using this IPEndPoint Object, and start listening
for a connection request by calling the tcplistener_object.Start method.

3. Optionally poll for a connection request using the tcplistener_object.Pending
property.

4. Accept the connection request and obtain a new Socket Object by calling the
tcplistener_object.AcceptSocket method. If no other connections are to be
serviced, stop listening for connections by calling the tcplistener_object.Stop
method.

5. Use socket_object.Receive and socket_object.Send to perform I/O with the
remote client.

6. When finished with the connection, call socket_object.Close to close it.

12.2.1. TCP Server Example

In this example, a simple TCP server is created to listen for connections on port 1234. A client may
connect from anywhere. The server simply echoes back whatever the client sends. You can use a
standard Telnet application to communicate with this server.

The IPEndPoint Object ep for the remote TCP client is set to IP address “”, port 1234, indicating it will
connect with any IP address using that port. A TcpListener Object, tl, is created that listens for
connections to that endpoint. The Pending method is used to poll for a connection request. When a

51

Guidance Programming Language

request arrives, the AcceptSocket method returns a new Socket Object ts that is used for receiving
messages and sending replies.

Public Sub Telnet
 ' Simple Telnet-like TCP server, listening on port 1234
 ' Echoes back whatever it receives
 Dim ep As New IPEndPoint("", 1234) ' Accept from any IP
 Dim tl As New TcpListener(ep)
 Dim ts As Socket
 Dim recv As String
 Dim send As String
 Dim ii As Integer

 ' Start listening and wait for a connection

 tl.Start()
 While Not tl.Pending()
 Thread.Sleep(5000)
 End While
 Console.Writeline("Connection request...")
 ts = tl.AcceptSocket() ' Get the socket
 tl.Stop() ' Only service one

 ' Read from client and echo back messages

 While True
 ii = ts.Receive(recv, 1000)
 Console.Writeline("Receive count: " & CStr(ii))
 If ii = 0 Then
 Exit While
 End If
 send = "Received: " & recv
 ts.Send(send)
 End While
 Console.Writeline("Connection closed")
 ts.Close()
End Sub

12.3. TCP Client

A TCP client is a process that establishes a connection with a remote TCP server, sends requests to it,
and receives replies. When the connection is no longer needed, it is closed. The steps for setting up a
TCP client are:

1. Create an IPEndPoint Object for the remote server endpoint. This Object
should specify the IP address of the remote server and the port number on which
the server is listening.

2. Create a TcpClient Object using this endpoint_object. Alternately you can
create a TcpClient Object omitting the endpoint_object, and later call
socket_object.Connect method to establish the connection.

3. Obtain the Socket Object for this connection by calling the
tcpclient_object.Client method.

4. Use socket_object.Send and socket_object.Receive to perform I/O with the
remote client.

5. When finished with the connection, call socket_object.Close to close it.

12.3.1. TCP Client Example

This example shows how to write a TCP client that connects to a TCP server.

52

The Guidance Programming Language

The IPEndPoint Object ep for the remote TCP server is set to IP address 192.168.0.2, port 1234. A
TcpClient Object, tc is created that connects to that endpoint. The Socket ts is obtained from tc and is
used for sending messages and receiving replies.

Public Sub Tcp_client
 ' Connect to a remote TCP server at
 ' IP address 192.168.0.2, Port 1234

 Dim ep As New IPEndPoint("192.168.0.2", 1234)
 Dim tc As New pClient(ep) Tc
 Dim ts As Socket
 Dim messag As String e
 Dim reply As String
 Dim ii As Integer

 ts = tc.Client
 message = "Test message" & Chr(GPL_CR) & Chr(GPL_LF)
 ts.Send(message)
 ts.Receive(reply, 1000)
 Console.Writeline("Reply: " & reply)

 For ii = 1 To 100
 ts.Send(message)
 ts.Receive(reply, 1000)
 Next ii
 Console.Writeline("Test complete")

 ts.
End Sub

Close

12.4. UDP Server and Client

A UDP Server and UDP client are very similar since there is no explicit connection between the two
endpoints. The difference is in how the endpoints are determined. The remote and local endpoints are
free to send or receive messages to or from any network address or port. The steps for setting up a UDP
server or client are:

1. Create an IPEndPoint Object for the local IP address and port. Normally the IP
address can be left blank. The port may be left as zero if incoming datagrams to
any port should be matched, or non-zero to match only datagrams to a specific
port

2. Create a UdpClient Object using this local IPEndPoint Object.
3. Obtain the Socket Object by calling the udpclient_object.Client method.
4. If you are initiating a request, create another IPEndPoint Object that contains

the IP address and port of the remote destination. Use this remote IPEndPoint
Object with the socket_object.SendTo method to send the datagram.

5. If you are expecting to receive a request, create an IPEndPoint Object and pass
it ByRef when calling the socket_object.ReceiveFrom method. The IP address
and port of the remote endpoint is automatically stored in this IPEndPoint
Object. You can then use the same IPEndPoint Object in a
socket_object.SendTo method call to respond to the endpoint that made the
request.

12.4.1. UDP Client Example - Read File using TFTP

In this example, a UDP client is created to read a file from a TFTP server. TFTP is a standard UDP-based
file server found on many computers.

53

Guidance Programming Language

The IPEndPoint Object srv_ep for the remote UDP client is set to IP address “192.168.0.2”, and the
TFTP port 69. A UdpClient Object, uc, is created and the Socket Object associated with uc is stored in
us. The remainder of the I/O is performed with this Socket Object.

A TFTP “file open” message is built in string out and sent to the remote UDP endpoint contained in
srv_ep using the SendTo method. Using the ReceiveFrom method, the reply is stored into the string inp,
and the responding remote endpoint is saved in rem_ep. The rest of the messages are sent to rem_ep,
and additional replies are checked to verify that they are also from rem_ep.

Public Sub TftpClient
 ' Access a TFTP server using UDP, open a file,
 ' and display it on the console.
 Dim file As String = "testfile.txt"
 Dim srv_ep As New IPEndPoint("192.168.0.2", 69)
 Dim rem_ep, e As dPoint p IPEn
 Dim As String out, inp
 Dim uc As New UdpClient()
 Dim us As Socket
 Dim count, op, block As Integer

 us = uc.Client

 ' Build "open for read" command
 out = Chr(0) & Chr(1) & file & Chr(0) & "octet" & Chr(0)
 us.SendTo(out, 0, srv_ep)

 count = us.ReceiveFrom(inp, 1500, rem_ep)
 Console.Writeline("Remote ip: " & rem_ep.IPAddress & _
 ", port: " & CStr(rem_ep.Port))

 op = Asc(inp.Substring(0,1))*256 + Asc(inp.Substring(1,1))
 block = Asc(inp.Substring(2,1))*256 + Asc(inp.Substring(3,1))
 Console.Writeline("Block: " & CStr(Block))
 If (count>4) Then
 Console.Writeline(inp.Substring(4))
 End If

 While True
 out = Chr(0) & Chr(4) & Chr(block/256) & Chr(block)
 us.SendTo(out, 0, rem_ep)

 If (count<512) Then ' End if less than 512 bytes
 Exit While
 End If

 nt = us.ReceiveFrom(inp, 1500, ecou p)
 If (ep.IPAddress<>rem_ep.IPAddress) Or _
 (ep.Port<>rem_ep.Port) Then
 Console.Writeline("Address mismatch")
 Exit While
 End If
 block = Asc(inp.Substring(2,1))*256 + _
 Asc(inp.Substring(3,1))
 Console.Writeline("Block: " & CStr(Block))
 If (count>4) Then
 Console.Writeline(inp.Substring(4))
 End If
 End While

 Console.Writeline("Transfer complete")
 us.Close

End Sub

12.4.2. UDP Client Example - Write File using TFTP

54

The Guidance Programming Language

In this example, a UDP client is executed on the controller that writes a file to a remote TFTP server.
TFTP is a standard UDP-based file server found on many computers.

The IPEndPoint Object srv_ep is set to the IP address (192.168.0.2) and TFTP port (69) for the remote
UDP server. An UdpClient Object, uc, is created and the Socket Object associated with uc is stored in
us. The remainder of the I/O is performed with this Socket Object.

A local file is opened for read using a StreamReader object. Then a TFTP “file write request” message is
built in string out and sent to the remote UDP endpoint contained in srv_ep using the SendTo method.
Using the ReceiveFrom method, the reply is stored into the string inp, and the responding remote
endpoint is saved in rem_ep. The reply opcode is checked to verify that the server has accepted the
write.

The rest of the messages are sent to rem_ep, and additional replies are checked to verify that they are
also from rem_ep.

Data is transferred from the local file to the TFTP server in blocks of 512 bytes, using a "data" message.
After each data message, the reply is read from the server and the opcode and acknowledged block
number is checked. A more elaborate client program could retransmit data blocks if an error occurs.

Public Sub TftpWrite
 ' Access a TFTP server using UDP,
 ' Open a local file for read,
 ' and write the file to the TFTP server
 Dim file As String le.txt" = "testfi
 Dim srv_ep As New IPEndPoint("192.168.0.2", 69)
 Dim rem_ep, e As IPEndPoint p
 Dim out, inp As String
 Dim in_file As StreamReader
 Dim uc As New UdpClient()
 Dim us As Socket
 Dim count, op, block, ack, err As Integer
 Dim c As Integer
 Dim ii As Integer

 ' Open file to read from flash
 in_file = New StreamReader("/flash/" & file)

 us = uc.Client

 ' Buil open f write" command " or d
 out Chr(0) & Chr(2) & file & Chr(0) & "octet" & Chr(0) =
 us.SendTo(out, 0, srv_ep)

 count = us.ReceiveFrom(inp, 1500, rem_ep)
 Console.Writeline("Remote ip: " & rem_ep.IPAddress & _
 ", port: " & CStr(rem_ep.Port))

 op = Asc(inp.Substring(0,1))*256 + Asc(inp.Substring(1,1))
 Console.Writeline("Open response: " & CStr(op))

 Handle er ' ror
 If op <> 4 Then
 If op = 5 Then
 err = Asc(inp.Substring(2,1))*256 +
Asc(inp.Substring(3,1))
 Console.Writeline("Error code: " & CStr(err))

 End If
 GoTo _exit
 End If

 block = 1

55

Guidance Programming Language

 Do
 out = ""
 For ii = 1 To 512 ' Read block of up to 512 bytes
 c = in_file.Read()
 If c < 0 Then Exit For
 out &= Chr(c)
 Next ii

 ' Write data block
 out = Chr(0) & Chr(3) & Chr(block/256) & Chr(block) & out
 us.SendTo(out, 0, rem_ep)

 ' Read reply
 unt = ReceiveFrom(inp, 1500, ep) co us.
 If (ep.IPAddress <> rem_ep.IPAddress) OrElse _
 (Port .Port) Then ep. <> rem_ep
 Console.Writeline("Address mismatch")
 Exit Do
 End If

 op = Asc(inp.Substring(0,1))*256 + Asc(inp.Substring(1,1))
 If (op <> 4) Then
 Console.WriteLine("Failed to write")
 End If
 ack = Asc(inp.Substring(2,1))*256 + Asc(inp.Substring(3,1))
 If ack <> block Then
 Console.Writeline("Ack block mismatch")
 End If
 block += 1
 Loop While ' Loop until end of file c >= 0
 Console.Writeline("Transfer complete")

 _exit:
 us.Close
 in_file.Close()

End Sub

13. MODBUS/TCP Communications

13. MODBUS/TCP Communications

The following pages explain how to communicate across the Ethernet network using the MODBUS/TCP
protocol. This is an "open" de facto standard protocol that is widely employed in the industrial
manufacturing environment to communicate with intelligent devices such as sensors and instruments. It
has been implemented by hundreds of vendors on thousands of different products to communicate digital
and analog I/O and register data between devices. In addition to factory applications, MODBUS/TCP is
being utilized in building, infrastructure, transportation and energy applications.

MODBUS/TCP is layered on top of the Ethernet TCP protocol. The GPL Modbus Class is provided as a
convenience to allow a GPL procedure to easily communicate with MODBUS/TCP devices without the
need to implement this protocol. This section provides a summary of the Modbus Class and examples of
how to use it. For additional details on specific methods, see the GPL Dictionary.

For more information on the TCP protocol, see the Network Communications section. For information
about the MODBUS/TCP protocol and standards, see the MODBUS-IDA website at
http://www.modbus.org.

56

The Guidance Programming Language

GPL operates as a Master and communicates to devices that are configured as MODBUS/TCP slaves. In
this mode, GPL supports the following MODBUS/TCP functions:

Function
Code

Function Name Description

1 Read coils Read one or more digital outputs.
2 Read discrete inputs Read one or more digital inputs.
3 Read holding registers Read one or more holding registers.
4 Read input registers Read one or more input registers.
5 Write single coil Write a single digital output.
6 Write single register Write a single holding register.
15 Write multiple coils Write multiple digital outputs.
16 Write multiple registers Write multiple holding registers.

43, MEI type
13 Read Device Identification Read string values identifying the device.

In addition, a Guidance controller can be configured to operate as a MODBUS/TCP slave and accept
commands from an 3rd party MODBUS/TCP master. Please see the Communications section of the
Introduction to the Software chapter of the Precise Documentation Library for more information on this
mode of operation.

13.1. Modbus Class

The Modbus Class in GPL supports master access to MODBUS/TCP slave devices connected to the
local Ethernet.

The tables below summarize the methods and properties of the class.

Modbus Class Member Type Description

New Modbus Constructor
Method

Creates an object for a MODBUS
connection and specifies the IP
address.

modbus_object.Close Method Closes any connections associated
with this object.

modbus_object.ReadCoils Method Reads one or more outputs.
modbus_object.ReadDeviceId Method Reads the device ID strings.
modbus_object.ReadDiscreteInputs Method Reads one or more inputs.
modbus_object.ReadHoldingRegisters Method Reads one or more holding registers.
modbus_object.ReadInputRegisters Method Reads one or more input registers.

modbus_object.Timeout Get/Set
Property

Gets or sets the timeout, in
milliseconds, that this connection will
wait for a reply before throwing an
exception.

modbus_object.WriteMultipleCoils Method Writes multiple outputs.
modbus_object.WriteMultipleRegisters Method Writes multiple holding registers.
modbus_object.WriteSingleCoil Method Writes a single output.
modbus_object.WriteSingleRegister Method Writes a single holding register.

57

Guidance Programming Language

13.2. Modbus Master Connection

When GPL operates as a MODBUS master, it sets up a TCP client connection with a remote
MODBUS/TCP slave. The slave acts as a TCP server. When the connection is no longer needed, it may
be closed. The steps for establishing this type of connection are as follows:

1. Create an IPEndPoint object for the remote MODBUS/TCP slave. This object
normally specifies the IP address of the slave and omits the port number, in
which case the standard MODBUS/TCP port is used.

2. Create a Modbus object using this endpoint_object. Creating a Modbus object
does not establish a connection, but simply saves the endpoint information for
later.

3. Use the modbus_object.Timeout property to set an appropriate timeout value for
the connection. By default the timeout is infinite.

4. Use the various Modbus class methods to read or write data. The first time you
issue a read or write, GPL attempts to connect with the MODBUS slave. If the
slave does not respond, an exception is thrown.

5. When finished with the MODBUS slave, call modbus_object.Close to close it.
Do this at the end of a session, not after each read or write request.

13.3. Modbus Master Examples

In both of these examples, the IPEndPoint object ep for the MODBUS slave is set to IP address
192.168.0.150. A Modbus object, mb is created that refers to that endpoint. The mb object is used for
communicating with the slave.

This first example shows a procedure that reads from a MODBUS slave.

Public Sub Modbus_Read_Example
 Dim ep As New IPEndPoint("192.168.0.150")
 Dim mb As New Modbus(ep)
 Dim ii As Integer
 Dim bool() As Boolean
 Dim input() As Integer

 mb.ReadCoils(1, 16, bool)
 For ii = 1 To 16
 Console.Write("Coil " & CStr(ii) & ": ")
 Console.Writeline(bool(ii-1))
 Next ii

 mb.ReadDiscreteInputs(1, 16, bool)
 For ii = 1 To 16
 Console.Write("Input " & CStr(ii) & ": ")
 Console.Writeline(bool(ii-1))
 Next ii

 ReadHoldingRegisters(1, 2, input) mb.
 For Toii = 1 2
 Console.Write e & CStr(ii) & ": ") ("HR g "
 Console.Writeline(Hex(input(ii-1)))
 Next ii

 mb.ReadInputRegisters(1, 2, input)
 For ii = 1 To 2
 Console.Write("IReg " & CStr(ii) & ": ")
 Console.Writeline(Hex(input(ii-1)))
 Next ii

58

The Guidance Programming Language

 mb.Close()

End Sub

The next example shows a procedure that writes to a MODBUS slave.

Public Sub Modbus_Write_Example
 Dim ep As New IPEndPoint("192.168.0.150")
 Dim mb As New Modbus(ep)
 Dim ii As Integer
 Dim output() As Integer
 Dim bool() As Boolean

 For ii = 1 To 16
 mb.WriteSingleCoil(ii, ii And 1)
 Next ii

 mb.WriteSingleRegister(1, 600)

 ReDim bool(15)
 For ii = 0 To 15
 bool(ii) = ii And 2
 Next ii
 mb.WriteMultipleCoils(1, bool)

 ReDim output(15)
 For ii = 0 To 15
 output(ii) = ii*ii
 Next ii

 mb.WriteMultipleRegisters(1, output)

End Sub

14. File I/O, Serial I/O and Streams

14. File I/O, Serial I/O and Streams

The following pages describe how to read and write data from or to serial ports and files using GPL
streams. These pages provide a summary of the classes and methods that may be used, as well as some
simple examples. For additional details on individual methods, see the GPL Dictionary.

The table below summarizes many of the concepts related to file and serial I/O operations that are
mentioned in this section.

Concept Description

ASCII
American Standard Code for Information Interchange. A code that represents the
English alphabet, numbers, symbols, and control characters as 7-bit binary
numbers. Used by GPL to represent text strings.

Buffer An internal data area that groups bytes into larger blocks so that they can be
read or written more efficiently.

Byte An 8-bit data item that can hold a number from 0 to 255 or an ASCII character.
Streams are composed of bytes.

CR Carriage Return. The ASCII control character with decimal value 13. Often used
as a line terminator.

Directory A named grouping of files. Also known as a "folder". Directory names have the

59

Guidance Programming Language

same properties as normal file names. Directories may be contained inside other
directories.

File A named collection of bytes that may be stored in permanent flash memory (on
device /flash) or in temporary system memory (on device /ROMDISK).

File name

The name of a file. File names may be from 1 to 43 characters and contain any
printable ASCII character other than "/" or a leading ".". Upper and lower case
letters are considered to be different. It is recommended, but not required, that
only valid GPL symbol names are used.

Flush

For efficiency, write operations often just add data to an internal buffer and do not
access the associated file or serial port. This allows small strings to be
accumulated. The system then automatically writes entire buffers to the output
device when the buffer is full. The downside of this process is that if the controller
is turned off, the contents of the internal buffers are lost. "Flushing" buffers
forces their contents to be written to the file or serial port. Closing a stream
automatically flushes any associated buffer.

LF Line Feed. The ASCII control character with decimal value 10. Often used as a
line terminator.

Line
terminator

A sequence of 1 or 2 ASCII characters that marks the end of a line. Normally LF,
CR, or CR-LF.

Path
The file name, preceded by a list of folders that determine the location of the file.
For example: A GPL program file may be found in
"/flash/projects/My_project/Main.gpl".

Serial port

An I/O device that transmits and receives byte data using a standard serial
protocol. The first RS-232 serial port is named "/dev/com1". Depending on your
controller model, you may have additional RS-232 serial ports named
"/dev/com2" and "/dev/com3" and an optional RS-485 serial port named
"/dev/com4". Remote serial ports are named "/dev/comrxy" where "x" is the
number of the remote device and "y" is the serial port on the remote device.

The StreamWriter and StreamReader classes treat data from serial ports or files as a continuous stream
of 8-bit bytes. These bytes may be ASCII characters or they may be arbitrary binary data. Many of the
methods transfer data to and from GPL string variables. Each byte of a string may be thought of as either
an 8-bit binary value or an ASCII character. GPL includes methods and functions to convert between
integer data and ASCII characters in strings, for example the Chr and Asc functions.

Some methods interpret the data stream as a series of lines, terminated by a special "line-terminator"
character sequence. The NewLine property allows some flexibility in determining the line-terminator used
when writing lines.

The File class contains methods for managing entire files or directories, such as creating directories or
deleting files. All the File methods are shared, so there are no File objects.

14.1. Classes and Methods

GPL provides the File built-in class for managing files and directories. The table below summarizes the
various methods available.

File Class Member Type Description

File.Copy Shared
Method

Copies a single file on devices like the flash disk
and ROMDISK.

File.CreateDirectory Shared
Method

Creates a directory including any undefined
directories in its path.

60

The Guidance Programming Language

File.DeleteDirectory Shared
Method Deletes a single directory, if it is empty.

File.DeleteFile Shared
Method Deletes a single file.

File.GetDirectories Shared
Method

Returns an array of strings containing the names
of directories in a directory.

File.GetFiles Shared
Method

Returns an array of strings containing the names
of files in a directory.

GPL provides two built-in classes for accessing streams: StreamReader and StreamWriter.

StreamReader Member Type Description

New StreamReader Constructor
Method Opens a file or serial port device for reading.

streamreader_obj.Close Method Closes a file or device.

streamreader_obj.Peek Method Reads a single byte but does not remove it from
the input stream.

streamreader_obj.Read Method Reads a single byte and removes it from the
input stream.

streamreader_obj.ReadLine Method Reads a line of bytes terminated by LF, CR, or
CR-LF.

StreamWriter Member Type Description

New StreamWriter Constructor
Method Opens a file or serial port device for writing.

streamwriter_obj.AutoFlush Property If True, automatically flushes output after every
write.

streamwriter_obj.Close Method Closes a file or device.
streamwriter_obj.Flush Method Forces any pending output to occur immediately.

streamwriter_obj.NewLine Property Defines the line terminator characters that are
appended to output by WriteLine.

streamwriter_obj.Write Method Writes a string or number to the output stream
with no line terminator.

streamwriter_obj.WriteLine Method Writes a string or number to the output stream
followed by a line terminator.

The same methods are used for accessing both files and serial ports. The major differences between the
two are:

1. Serial ports are normally used for communications, but files are used to save and
retrieve data.

2. Data read from files is normally available immediately, but you may need to wait
to receive data from a serial port.

3. Files have an "end of file", but serial port data can continue indefinitely.
4. Data written to files is normally buffered for efficiency, but serial port

communications are often time-critical so the output is not buffered.

GPL also provides a built-in class for performing output to the serial console or to the GDE console
window.

61

Guidance Programming Language

Console Class Member Type Description

Console.Write Shared
Method

Diagnostic method that writes a number or a string
to the console.

Console.WriteLine Shared
Method

Diagnostic method that writes a number or a string
to the console, followed by a line feed (LF)
character.

14.2. File I/O

Files are used to save and retrieve data to and from a disk, flash or similar device. To locate a file, you
must provide a "path" to that file. The first item in the path is the device, followed by a list of folders, and
ending with the file name. The device name, folder names and file name are separated by "/" characters.
For example:

/ROMDISK/my_folder/my_file.dat

File names often contain an embedded "." followed by a character sequence that indicates the file type.
This file type is treated as simply part of the file name and is ignored by the file system. However, the file
type is used by certain system components. For example, the GPL compiler assumes that source files
always have the type ".gpl", so a file name might be:

/flash/projects/Myproject/Main.gpl

Files may be either temporary or permanent. Temporary files are written to a temporary memory-based
disk with device name "/ROMDISK". These files consume blocks of the CPU's main memory and are lost
when the controller is restarted. Temporary files may be read or written very quickly. Permanent files are
written to a disk which is part of the non-volatile flash memory, with device name "/flash". This disk is very
slow to write, but may be read quickly. All file paths must begin with either "/ROMDISK" or "/flash".

14.2.1. Steps for Writing a File

1. Open the file by creating a StreamWriter object. The path to the file to be written
is a required argument to the StreamWriter New method. If you want to append
to an existing file, set the append input parameter to True. Otherwise a new file is
created, overwriting any existing file that matches the path.

2. Decide if you want your data to be buffered during output. If not, change the
AutoFlush property to True, from its default value of False. Setting AutoFlush
to True will make the output much slower, especially for the /flash device.

3. If you are going to organize your output data into lines, decide if the default line
terminator (CR-LF) is appropriate. If not, use the NewLine property to change it.

4. Use the Write or WriteLine methods to write the data.
5. Use the Close method to force any pending output to be written and to update all

internal file data.

14.2.2. Steps for Reading a File

1. Open the file by creating a StreamReader object. The path to the file to be read
is a required argument to the StreamReader New method.

2. Read the data by using either the Read or ReadLine methods.
3. Use the Peek method to check for the end of the file, or enclose the read

operation in a Try-Catch block to capture read errors.
4. Use the Close method to release any system resources held by the object.

62

The Guidance Programming Language

14.2.3. File I/O Example

In this example, a temporary file is created using the StreamWriter object "o" and written with lines that
contain the string values "Line 1" through "Line 10". The file is closed and then opened for read using the
StreamReader object "i". If the Peek method does not indicate end-of-file, a line is read from the input file
and written to the console. Finally the input file is closed.

Public Sub file_write_read
 ' Write a file, read it back, and display it on the console
 Dim o As New StreamWriter("/ROMDISK/filetest")
 Dim i As StreamReader
 Dim lin As String e
 Dim ii As Integer

 For ii = To 0 1 1
 o.WriteLine("Line " & CStr(ii))
 Next ii
 o.Close()

 i = New StreamReader("/ROMDISK/filetest")
 While i.Peek() >=0 ' Check if end-of-file
 line = i.Readline()
 Console.WriteLine(line)
 End While
 i.Close()
End Sub

14.3. Serial I/O

Serial ports are normally used to communicate with a host computer or an intelligent sensor. The GPL
Controller's first RS-232 serial port is named "/dev/com1". If your controller contains additional RS-232
serial ports, they are named "/dev/com2" and "/dev/com3". If your controller contains an RS-485 port that
is available to application programs, it is named "/dev/com4". If your system is connected to a Remote IO
(RIO) board that provides additional remote serial ports, they are named "/dev/comrxy" where "x" is the
number of the RIO board and "y" is the number of the RIO's serial port.

The first serial port is also used by the GPL serial console interface, so you cannot use the serial console
if you are using "/dev/com1". When you open device "/dev/com1", the console interface is immediately
disabled. You can disable or re-enable the serial console, by changing Parameter Database entry "Serial
console enable" (DataID 125). When the serial port is being utilized for program input and output, you can
still access the system console via the Telnet interface. Note that system crash messages and certain
fatal error messages may be output to /dev/com1 even when it is being used by a GPL procedure. Your
remote system must be able to handle these unexpected messages.

Serial ports send and receive streams of byte data in a format and rate determined by their configuration.
See instructions elsewhere for setting up the baud rate, character size, stop bits, parity, and hardware
flow control settings. Unlike files, a single serial port can be opened for both input and output
simultaneously. There is no way for a serial device to detect that a communications link has been closed.
Normally the remote device sends a special byte sequence or message to indicate the end of
communications.

14.3.1. Steps for Communicating Using a Serial Port

1. If you are planning to use the first serial port permanently for communications,
set the system parameter "Serial console enable" (DataID 125) to 0.

63

Guidance Programming Language

2. Open the port for output by creating a StreamWriter object. The device name is
a required argument to the StreamWriter New method. For serial port 1, the
device is "/dev/com1".

3. Open the port for input by creating a StreamReader object. The device name is
a required argument to the StreamReader New method. Use the same device
as specified in the previous step.

4. Decide if you want your data to be buffered during output. Generally serial
communications is not buffered. If you want it buffered, change the AutoFlush
property to False, from its default value of True. If you use buffered output you
probably need to use the Flush method to make sure your output is transmitted
when you expect.

5. If you are going to organize your output data into lines, decide if the default line
terminator (CR-LF) is appropriate. If not, use the NewLine property to change it.

6. Use the Write or WriteLine methods on your StreamWriter object to write data.
7. If you do not want your input procedure to be blocked while waiting for data to be

received, use the Peek method to check if data is present before using Read.
8. Use the Read or ReadLine methods on your StreamReader object to read data.
9. Use the Close method to release the serial ports for other use and free system

resources.

14.3.2. Serial I/O Example

In this example, serial port 1 is used to communicate with an operator terminal connected to the port. The
program prompts the operator to type a character and waits until they do. Then it outputs a message
describing the character to the serial port. The device "/dev/com1" is opened for both output and input by
creating both StreamWriter and StreamReader objects, "o" and "i", respectively. The output line
terminator is set to CR by using the NewLine property. The procedure polls the input every 500
milliseconds for input. If no input is received, a series of dots is output. When an input character is
received, it is converted to a readable string and a message is written back to the serial port. When an
ASCII ESC character (decimal value 27) is received, the procedure closes the streams and exits.

Public Sub com1
 ' Open com1, echo info about any input.
 Dim o As New StreamWriter("/dev/com1")
 Dim i As New StreamReader("/dev/com1")
 Dim c As Integer
 Dim ss As String

 o.NewLine = Chr(GPL_CR) ' Set CR as the line terminator
 o.WriteLine("Type characters, hit ESC to quit.")

 Do
 Write("Waiting for input ") o.
 While Peek 0 i. () <
 Thread.Sleep(500)
 Write(".") o.
 End While
 o.WriteLine("")

 c = i.Read()
 If c >= &H20 Then
 ss = Chr(c)
 Else
 ss = "^" & Chr(c+&H40)
 End If

 o.WriteLine("You typed " & """" & ss _
 & """ = " & CStr(c))
 Loop While c <> 27 ' Exit if ESC typed

 i.Close()

64

The Guidance Programming Language

 o.
End Sub

Close()

14.4. Console Output

As a convenience during program development and testing, serial output may be performed to the GPL
console. The actual destination of console output depends on the presence of the -event switch on the
Start console command. If -event is not present, console output is sent to the first serial port named
"/dev/com1". If -event is present, console output is sent to GDE where it is displayed in the GPL Output
window.

For more information on how to use and configure the serial ports, see the previous Serial I/O section.

The console output methods are overloaded and allow either a numeric value or string to be output. For
output that combines both string and numeric values, use the CStr function.

14.4.1. Example

Public Sub Main
 Dim ii As Integer
 For ii = 1 To 10
 Console.WriteLine("The square of " & CStr(ii) _
 & " is " & CStr(ii*ii))

End Sub

Next ii

14.5. Non-Volatile Memory (NVRAM)

Some Precise controllers manufactured after June 2013 include a small area of Non-Volatile Memory
(NVRAM) that is user accessible. The NVRAM contents are preserved when the controller power is
turned off. This area was added to permit applications to store a limited amount of key dynamic state
information such as performance statistics or System Error Log entries.

The NVRAM is different from the non-volatile flash memory (device /flash) in that the NVRAM is not
affected by unexpected power-off conditions. After writing to the /flash device, you must wait for at least
15 seconds before powering off the controller. If you do not wait, the /flash contents may become
corrupted and you may lose all of the files stored on the /flash device. The NVRAM can be written
without danger of corrupting existing data, even if the power is turned off during a write operation. Of
course, the data actively being written may be lost.

Another difference is that the flash memory can only be written a finite (but relatively large) number of
times, whereas the NVRAM can be written an unlimited number of times.

The major downside of the NVRAM is that its storage area is small compared to the flash memory. The
total NVRAM size is 8Kbytes of which 7872 bytes are available for user files.

14.5.1. /NVRAM Files

Data may be stored in files on the NVRAM by specifying the device /NVRAM. This device may be used
with all types of I/O methods, including StreamWriter, StreamReader, and FTP.

14.5.1.1. File Names

65

Guidance Programming Language

To maximize the space available for data, a maximum of 16 NVRAM files may be created, and the names
must be "file1" through "file16".

14.5.1.2. Maximum File Size

When an NVRAM file is created, it's maximum size should be defined by appending the following switch
to the file path specification:

-size n

where n is the maximum size of the file, in bytes. This value may range from 4 to the maximum number of
unused bytes on the device (less than 7873). Once a file is created, its size cannot be changed unless
the file is deleted and created again.

If “-size n” is omitted when creating a new file, a default size of 1024 bytes is assumed.

14.5.1.3. Circular Files

To assist in logging data to the NVRAM, a file may be specified to act as a circular buffer that wraps
around to the beginning once it reaches its maximum size. This mode of operation is enabled by
appending the following switch to the file path specification:

-wrap

In a circular file, new data overwrites the oldest data once the maximum file size is reached. In a normal
non-circular file, an error is signaled if an attempt is made to write when the file is full.

By searching for the final record in a file, you can always find the latest entry, even after a power failure.

14.5.1.4. File Records

When a NVRAM file is written, the data is stored as a record. Each record can have a maximum length of
255 bytes. Each record is written atomically, that is, either the entire record is written or none of the
record is written, even if the power fails during the write operation. In a circular file, entire records from the
start of the file are removed atomically before new records are added. In this way, records in the file are
never left in a partially updated state.

Delaying an output request to the NVRAM by buffering defeats some of the NVRAM benefits, since
buffered data may be lost during a power fail. To avoid this problem, StreamWriter objects for device
/NVRAM have AutoFlush enabled by default. If you disable AutoFlush, you need to be aware of the
implications and use the Flush method appropriately.

There is one byte of overhead for the entire file, and one byte for each record. You should account for this
overhead when computing the maximum number of records that a file can contain.

There are no special considerations for reading an NVRAM file except that attempting to read a circular
file while it is being written may return inconsistent data.

14.5.1.5. FTP Access

66

The Guidance Programming Language

The files in the /NVRAM device may be accessed by a remote FTP client. If your host computer supports
this service, the /NVRAM folder shows up in the top-level FTP directory. FTP always displays the
maximum allocated file size and the date and time the file was last modified.

14.5.1.6. File Writing Examples

In this example, a non-circular file with a maximum length of 64 bytes is created,

Dim tfile As New StreamWriter("/NVRAM/file2 -size 64", True)
Dim ii As Integer
For ii = 1 To 100

Next i

tfile.WriteLine("Record " & CStr(ii))
i

tfile.Close

This program fails with ii = 6 with error -323 (Device full). At this point, /NVRAM/file2 contains the
following records:

Record 1
Record 2
Record 3
Record 4
Record 5

In the next example, a circular file is created of the same size.

Dim tfi As New StreamWriter("/NVRAM/file3 -size 64 -wrap", True) le
Dim ii As Integer
For ii = 1 To 100
 tfile.WriteLine("Record " & CStr(ii))
Next ii
tfile.Clos

This program does not fail. After execution completes, /NVRAM/file3 contains the final records written:

Record 96
Record 97
Record 98
Record 99
Record 100

14.5.2. Automatically Logging Error Messages to the NVRAM

In GPL 4.0 and later, a new feature was added that automatically writes system error messages into a
specified file as the errors occur. This feature is enabled by writing the file name into the Parameter
Database entry "Error log file" (DataID 323). This feature was designed with the NVRAM in mind but can
be used with other file structured devices as well.

To automatically enable error message logging into the NVRAM, a file name and file size must be
specified. For example, DataID 323 could be set to:

"/NVRAM/file1 -size 7500 -wrap"

67

Guidance Programming Language

This would write all new error messages into file1 using most of the available NVRAM space. The
maximum size could be set to 7872. The "-wrap" will create a circular buffer so that older messages will
be over-written by new messages when the file becomes full.

Prior to enabling error logging, the console command "Del" should be used to make space for the error
log file.

Please see the documentation on "Error log file" (DataID 323) for a full list of the options available with
this feature.

14.5.3. Non-Volatile Integer Data

For some applications, only a small amount of data needs to be saved and the flexibility offered by the file
system is not required.

GPL provides eight 32-bit signed integers that are stored in the NVRAM and accessed by DataID 1892
"GPL program NVRAM variable array". These DataID values may be freely read or written by GPL
programs or the web interface. The most recent value written is always saved in the NVRAM. The four
bytes that make up each 32-bit value are always written atomically, so each 32-bit value is always valid.

15. Vision Guidance

15. Vision Guidance

The following pages describe how to access the PreciseVision machine vision system from a GPL
procedure and use the vision data in a motion application.

PreciseVision is a software application that runs on a PC. The PC, in turn, is connected to cameras that
acquire images to be processed. The vision processing performed by PreciseVision is specified in terms
of "vision tools" and "vision processes". Details about how to setup and program PreciseVision may be
found in the PreciseVision Machine Vision System, Introduction and Reference Manual.

In order for GPL to send commands to PreciseVision, GPL must know the IP address for the PC that is
executing PreciseVision. This value is specified in the Configuration and Parameter Database in the
"Vision server IP address" (DataID 424).

The table below summarizes some of the concepts related to vision operations that are mentioned in this
section.

Concept Description

Client
A process that makes requests to a server and handles the responses. Normally
a client initiates all communications and does not receive data except in response
to a request.

Server A process that responds to requests and sends responses. It normally does not
initiate I/O.

Vision Tool
A single operation executed by PreciseVision. A typical tool might find an object
(e.g. a Finder Tool), measure a dimension (e.g. an Edge Locator) or locate a key
feature (e.g. a Line Fitter).

Vision A series of vision tools performed on an image by PreciseVision. The tools in the

68

The Guidance Programming Language

Process process normally produce Vision Results that are used by a GPL procedure.

Vision
Result

The output of a Vision Tool that is executed by PreciseVision. A set of Results
may contain pass/fail information, location data, or general numeric data. Some
tools only generate a single set of results (e.g. a Line Fitter) while others generate
multiple sets of results (e.g. a Finder). A single set of results is normally stored in
a VisResult object in GPL.

When active, PreciseVision acts as a server that fields requests from client GPL procedures. These client
GPL procedures execute on a Precise Controller and communicate with the PC via Ethernet. By
designing GPL procedures as clients of PreciseVision, GPL procedures have complete control over when
pictures are taken and processed.

To take a picture and analyze its results, a GPL procedure issues a command to PreciseVision to execute
a "vision process". Normally, a vision process consists of a tool that takes a picture (i.e. an Acquisition
Tool) followed by additional tools to process and analyze the picture. In the simplest case, a vision
process consists of a single tool that operates on an existing picture. At times, a process can be quite
complex and might contain dozens of tools that inspect multiple features of parts to verify that the parts
are correct. From GPL's point of view, a vision process is a single, indivisible operation. That is, after a
GPL procedure starts a vision process, no results are available until after the process completes its
execution. When the process is done running, GPL can then interrogate PreciseVision for its results.

In order for GPL to execute a process and retrieve the results, GPL has to know the name that has been
assigned to the process in PreciseVision and the names of any tools for which results are desired. Once
the vision process has completed execution, a GPL procedure can utilize the tool names to retrieve the
results from any tool. These results typically indicate the locations of parts that are to be manipulated and
the type of each part. In addition, vision can be used to check for key dimensions or other features of the
parts and can return information to GPL about the quality of a part. As mentioned above, some tools
return only a single set of results while others can return multiple sets of information.

Each time that a vision process is executed, all of the previous results of its tools are lost and replaced by
the newly computed results. However, if a second vision process is executed using another
communication object, the results of first vision process are preserved.

The following pages provide a summary of the built-in GPL classes and methods that act as an interface
to the PreciseVision system, as well as some simple examples.

15.1. Classes and Methods

The network communication interface between the Precise controller and the PreciseVision system is
implemented by a Vision class and its associated objects. Its methods and properties allow a GPL
procedure to establish a connection with PreciseVision, run a vision process, and obtain the results from
that process.

The VisResult class defines objects that each store a single set of results from a vision tool. These
objects may contain pass/fail information, location data, or general numeric data, depending on the vision
tool.

The tables below summarize the available members for the vision classes. For additional details on
individual vision methods and properties, please see the GPL Dictionary.

Vision Class Member Type Description
New Vision Constructor Creates an empty Vision object. Does not

69

Guidance Programming Language

Method communicate with PreciseVision.

vision_object.Disconnect Method Closes any open connection associated with a
vision object.

vision_object.ErrorCode Property
Returns the numeric error code for the last
executed vision process. A value of 0 indicates
success; a negative value indicates an error.

vision_object.Instance Property Sets and gets the number of the PreciseVision
instance that is associated with a vision object.

vision_object.IPAddress Property
Sets and gets the IP address of the PC that is
running the PreciseVision application software
associated with a vision object.

vision_object.Process Method
Requests that PreciseVision execute a vision
process and waits for it to complete. Connects to
PreciseVision if there is currently no connection.

vision_object.Result Method

Returns a VisResult object that contains a single
set of results from a previously executed vision
tool. Connects to PreciseVision if there is
currently no connection.

vision_object.ResultCount Method

Returns the number of sets of vision results
created by a vision tool the last time it was
executed. Connects to PreciseVision if there is
currently no connection.

vision_object.Status Property

Returns a numeric value indicating the status of a
vision process:

0 = No vision process for this object,
1 = Process is running,
2 = Process complete but with error,
3 = Process complete with success.

vision_object.ToolProperty Property
Sets or gets a property value of a PreciseVision
tool or a general "system" property for the vision
server connected to a vision object.

VisResult Class Member Type Description

New VisResult Constructor
Method

Creates an empty VisResult object. Not useful
since VisResult objects are normally created
by the vision_object.Result method.

visresult_object.ErrorCode Property

Returns the numeric error code for this result. A
value of 0 indicates success; a negative value
indicates an error. A positive value indicates a
non-critical error occurred.

visresult_object.Info Property Returns the nth numeric information field
contained in this set of results.

visresult_object.InfoCount Property Returns the number of numeric information
items in this set of results.

visresult_object.InfoString Property Returns a String value if the set of vision
results includes text information.

visresult_object.InspectActual Property Returns the value of the tool property that was
tested in the vision inspection process.

visresult_object.InspectPassed Property Returns True if a property of the vision results
satisfied the tool's vision inspection criteria.

70

The Guidance Programming Language

visresult_object.Loc Property Returns the position and orientation from a set
of results as a Cartesian Location object.

visresult_object.ProcessID Property Returns the ID of the vision process that
generated the result.

visresult_object.Type Property Returns the type of this set of results. Currently
always zero.

15.2. Vision Interface

Vision objects are used to communicate with the PreciseVision system. The communications occur
across a TCP/IP Ethernet link between the Precise controller and the PC running PreciseVision. Simply
creating a Vision object does not cause any communication to occur.

The Vision methods Process, Result, and ResultCount all send a request to PreciseVision and wait for
a reply. There is no method to explicitly connect to PreciseVision. A connection is automatically
established when one of these methods is called.

When making a connection, the Precise controller attempts to communicate with TCP port 1410 at the IP
address specified by the parameter database entry "Vision server IP address" (DataID 424). If a
connection cannot be made, an exception is thrown. Once a request is sent, PreciseVision must respond
within 30 seconds or an exception is generated.

The steps for preparing PreciseVision to service requests and to execute vision processes for a Precise
controller are as follows:

1. Physically connect your Precise controller with the PC running PreciseVision.
Make sure the Ethernet IP addresses are setup properly and the PC can
communicate with the GPL controller.

2. Using PreciseVision on the PC, create a vision process that uses vision tools to
acquire an image and perform the desired vision operations.

3. Make sure that PreciseVision is active and listening for requests.

To develop a vision guidance application that will execute on a Precise controller and communicate with
PreciseVision, write and execute a GPL procedure that does the following:

1. Creates a Vision object to serve as the interface to PreciseVision.
2. Executes a Vision Process method to initiate a vision process in PreciseVision.

The process name specified in this method must match a vision process defined
within PreciseVision.

3. Invokes the ResultCount method to determine how many sets of results were
generated by each vision tool of interest.

4. Accesses the Result method for each vision tool of interest to obtain a VisResult
object that contains the output for the tool.

5. Uses the VisResult class properties and methods to obtain specific vision data
that can be applied in your GPL procedure.

6. Executes the Vision Disconnect method when done with all vision processing to
close the communication connection.

71

Guidance Programming Language

15.3. Vision Procedure Example

In this example, PreciseVision is used to determine the location of a part that is then acquired by the
robot. The output of the vision process is used to create a reference frame, and the robot is moved to a
point relative to that reference frame.

In particular, the robot moves to the location safe to avoid blocking the camera's field-of-view. The Vision
object vis is then used to connect with PreciseVision and execute the vision process "Main". This vision
process takes a picture and executes vision tools to locate the part and perform any desired visual
verifications. At the end of the vision process, all that GPL requires is the results of the tool “part1”, which
contains the location of the part. The GPL procedure then checks the ResultCount property to ensure
that at least one set of results is available. The Result method returns the first set of results from "part1"
in the VisResult object vResult. The returned vision location is used to create the object vsRefFrame,
which is the reference frame for location vsRelPoint. The robot moves to vsRelPoint and finally moves
back to its safe location.

Public Sub MAIN
 Dim vis As New Vision
 Dim vResult As New VisResult

 Robot.Attached = 1
 Move.Loc(safe, vsProfile)

 vis.Process("Main") ' Run vision process "Main"
 If vis.ResultCount("part1") = 0 Then
 Console.Writeline("Vision object not found")
 Goto done
 End If
 vResult = vis.Result("part1", 1) ' Get results

 ' Create a reference frame object and set it
 ' equal to the returned vision location
 Dim vsRefFr As New RefFrame ame
 vsRefFrame.Loc.PosWrtRef = vResult.Loc

 ' Pickup point is relative to new frame
 vsRelPoint.RefFrame = vsRefFrame

 Move.Approach(vsRelPoint, vsProfile)
 Move.Loc(vsRelPoint, vsProfile)
 Move.Approach(vsRelPoint, vsProfile)

 ' Move back to safe location
 Move.Loc(safe, vsProfile)

done:
End Sub

16. Managing and Executing GPL Projects
16.1. Projects and Files

In GPL, rather than executing a "program", a "Project" is the basic executable entity. Console commands
are provided for loading, compiling, and executing a Project. A Project consists of two or more text files
that are stored within a single disk folder (directory). Each file is a standard human-readable ASCII file.
The folder name and the Project name are synonymous.

72

The Guidance Programming Language

The file "Project.gpr" must always be present in each project folder and is referred to as the "Project
File". This file contains information on the other files within the Project including which program is
invoked when the Project begins execution.

Each GPL source file has a "gpl" extension. These files each can contain one or more modules, which in-
turn can contain multiple variable declarations and procedures.

A Project can also contain one, several or no files with a "gpo" extension. This type of file contains a
global module that is used to defined global Location and Profile objects. This file is convenient for
storing taught robot locations and general motion Profiles that are accessible by all procedures within the
Project.

Loading a Project into memory or copying a Project from memory or between disk units is equivalent to
copying a file folder and all of its contents. Multiple Projects can be present in memory although only one
Project can be executed at any given time.

16.2. Modules

Only modules can be found at the outer-most level of a file. [In the future, class declarations will also be
allowed]. These modules contain variable declarations such as Public, Private, and Dim statements, or
procedure declarations such as Sub or Function statements. A procedure or module-level variable can
be accessed by fully specifying its name using the syntax:

module_name.variable_name
 -or-
module_name.procedure_name

Within a single module, all procedures and module-level variables can be freely accessed. However, only
Public procedures and variables in other modules can be accessed. If Public variables or procedures
with the same name are found in two different modules, they can only be accessed by using the fully-
specified name, to disambiguate the multiple definitions.

16.3. Executing a Project

Before a Project can be executed, it must be loaded into memory and compiled. The steps are as
follows:

1. Load the Project and associated files into memory.

2. Issue a compile request for the Project.

3. Issue a start request for the Project.

The Project begins execution at the "start" procedure specified in the Project File (Project.gpr). Note that
the start procedure must be declared Public.

73

Guidance Programming Language

17. Thread Control

17. Thread Control

When a GPL Project begins execution, its main procedure starts running in a user program "thread". Each
thread has its own execution stack and runs independently of all other program and system threads.

The GPL system supports the simultaneous execution of up to 32 GPL user program threads. These
threads allow simultaneous execution of multiple projects. Even more importantly, a main thread can
initiate and control the execution of additional procedures in their own threads. This is very convenient for
the execution of communications servers, digital I/O scanners, and cell control tasks that are best
executed asynchronously from the main execution thread. In general, executing procedures that operate
asynchronously in their own threads simplifies the design, coding, and debugging of the procedure.

17.1. Thread Synchronization

When multiple GPL threads are employed within a single project, it is often necessary to synchronize
them. For example, a server thread may wait for a client thread to post a command, and the client may
wait for the server to respond.

Two or more threads can efficiently be synchronized by using the SendEvent and WaitEvent methods.
Any GPL thread can send a synchronization message called an event to any other GPL thread. Up to 16
independent events per thread can be sent to permit the receiving thread to discriminate between types
of events. The events are numbered 1 through 16. The target thread uses WaitEvent to efficiently wait for
one or more of these events to be received. While a thread is waiting for an event, it uses almost no CPU
time.

17.2. Thread Scheduling

GPL includes a multi-threaded preemptive priority-driven real-time operating system. User program
threads can be swapped out or preempted by system threads any time the system clock ticks or
whenever an I/O device interrupt occurs. Clock tick interrupts occur every 125 µsec (8KHz) and cause the
system to swap out the current thread and begin execution of servo control threads and other high priority
system threads. After the system threads complete, eligible user threads are executed during the
remainder of the time before the next clock tick.

The standard thread scheduling algorithm for normal user threads is a round-robin scheme. In this
approach, each user thread is permitted to execute for up to one millisecond before the next user thread
that is ready to run is swapped in. Since the clock ticks at 8KHz, a user thread runs for up to eight 125
µsec ticks. If a user thread is active when the clock ticks, the thread's "remaining tick count" is
decremented by 1, even if it did not run for the entire previous tick. When this count hits 0, the thread is
moved to the end of the round-robin list. After all other user threads and system threads have had a
chance to run, the original thread will move to the start of the round-robin list and will resume execution.

When a thread goes to sleep, is blocked, or is preempted, its remaining tick count is not decremented, so
when it resumes execution, it gets the remainder of the 8 ticks that are left. When a thread is blocked or
uses the Thread.Sleep method, all other threads continue to execute, using whatever time is available.
When a user thread is unblocked or wakes from a sleep, it goes to the end of the round-robin list with
whatever time it had left in its 1 msec interval. When a thread is preempted by a higher priority thread and
resumed, it continues executing for whatever time it has left. It is not put at the end of the round-robin list.

74

The Guidance Programming Language

If many user threads and system threads are busy, a given user thread may only get to run for 1 out of n
milliseconds, where n is the number of busy threads. Nonetheless, the standard round-robin scheduling
provides a good balance for most applications. For some time-critical user threads, this scheduling
method may be undesirable.

An alternate scheduling algorithm, enabled by the Thread.Schedule method, allows critical user threads
to run in a timely manner ahead of all other standard-priority threads. This algorithm is based on the
POSIX sporadic scheduling policy. The algorithm schedules specified threads as follows:

• At a fixed repetition rate, any specified high priority user thread has its priority
raised above the standard thread priority.

• After the high priority thread has run for a specified period of time, the thread's
priority is returned to the standard level, and it is placed at the end of the round-
robin queue of standard-level threads.

• The high priority thread may run at standard priority if it gets to the front of the
round-robin queue before the start of its next high priority period.

For more information on the specifics of the alternative scheduling algorithm, please see the dictionary
page on the Thread.Schedule method.

17.3. The Thread Class

To control the starting, stopping, and monitoring of independent threads, GPL includes a Thread Class
that includes the required methods and properties. In the following table, the members of this Class are
briefly described. Completion information on these class members are provided in the GPL Dictionary
pages.

Member Type Description

New Thread Constructor
Method

Creates a thread object and associates it with a
procedure.

thread_object.Abort Method Stops execution of a thread such that it cannot
be resumed.

thread_object.Argument Property Sets or gets a numeric value that can be used
as a parameter for a thread.

Thread.CurrentThread Shared
Method

Returns a thread object for the currently
executing thread.

thread_object.Join Method Waits for a thread to complete execution, with a
timeout.

thread_object.Name Get
Property

Returns a String containing the name of the
thread associated with this object.

thread_object.Project Get
Property

Returns a String containing the name of the
project associated with this object.

thread_object.Resume Method Resumes execution of a thread that was
suspended.

Thread.Schedule Shared
Method

Changes the execution priority and thread
scheduling algorithm for the current thread.

thread_object.SendEvent Method Sends an event to a thread to notify it that a
significant transition has occurred.

Thread.Sleep Shared
Method

Causes the current thread to stop execution for
a specified amount of time.

thread_object.Start Method Initializes and starts execution of a procedure as
an independent thread.

75

Guidance Programming Language

thread_object.StartProcedure Get
Property

Returns a String containing the name of the
start procedure associated with this object.

thread_object.Suspend Method Suspends execution of a thread so that it can be
resumed.

Thread.TestAndSet Shared
Method

Atomically reads a numeric variable and writes
a new value. Used for restricting access to data
shared between threads.

thread_object.ThreadState Get
Property

Returns an integer indicating the execution state
of a thread.

Thread.WaitEvent Shared
Method Causes the current thread to wait for an event.

17.4. Thread-Safe Data Access in GPL

In applications that use more than one user program thread, the operating system dynamically switches
execution of the threads. From instant to instant, there is no guarantee that any particular thread will
continue execution. A thread can be swapped out and another thread swapped in at any moment, even in
the middle of an instruction.

When two or more user program threads access the same data, they may interact in an unexpected way.
For example, if two user threads both attempt to increment the same GPL variable, an intermittent bug
may occur. If both threads execute the statement: a = a + 1, the following may happen, assuming a starts
at value of 0:

Thread Switching Thread Action
Thread 1 is running. Thread 1 reads the value of a. It reads the value 0.
Thread 2 swaps in. Thread 2 reads the value of a. It reads the value 0.
Thread 2 continues. Thread 2 adds 1 to its value and writes it to a.
Thread 1 resumes. Thread 1 adds 1 to the value 0 it read previously, and writes it to a.

Even though both threads intended to add 1 to a, the final value of a is 1 instead of the expected value of
2.

When an operation is thread-safe it means that it produces the same results regardless of whether a
single thread or multiple threads are performing it.

17.4.1. Thread-Safe Data Types in GPL

Numeric and Boolean data reading is always thread-safe. All numeric data types may be read,
regardless of how the data is being written. You will always get one of the values that someone has
written. You can also read numeric data from statically allocated arrays or objects.

Simple writing of numeric data is also thread-safe. If multiple threads write the same variable, the result
will always be one of the values written. If only one thread is writing a numeric variable, there is no need
to interlock the access with threads that are reading.

Operations that first read and then write a numeric variable are not thread-safe, as illustrated by the
example in the previous section. It is always possible for another thread to write the data value while the
original thread is modifying it.

76

The Guidance Programming Language

Groupings of numeric values (arrays and objects with multiple embedded values) are not thread-safe.
For example, if one thread changes the X and Y values of a location, a second thread may see a
transient condition where only the X or Y is changed.

String data is not thread safe. If one thread is reading a string value while another thread is writing it,
the reader may see a mixture of the old data and the new data. Simple string assignment is thread-safe
since the final value will be one of the values written. However most string methods that modify the string
values are not thread-safe.

Objects are generally not thread-safe and there is no interlocking among the object fields. However
individual numeric fields within an object are thread-safe.

Dynamic arrays are not thread-safe, even if they contain numeric data. These are arrays whose sizes
are altered using a ReDim statement to change their size during execution.

17.4.2. Creating Thread-Safe Interlocks

Thread-safe interlocks may be created using the GPL Thread.TestAndSet method. This method is fully
described in the GPL Dictionary section. Sample lock and unlock routines are shown below:

' Lock the semaphore. Wait until lock is obtained.
Public Sub acquire_sem(ByRef sem_var As Integer)
 While Thread.TestAndSet(sem_var, 1) <> 0
 Thread.Sleep(0)
 End While
End Sub

' Unlock the semaphore
Public Sub release_sem(ByRef sem_var As Integer)
 sem
End Sub

_var = 0

This acquire_sem() routine waits indefinitely until the lock can be obtained. If desired, this routine can be
enhanced to wait for a limited time and return an error or throw an exception if that time limit is exceeded.

You can use these routines to lock a thread during an unsafe data access, to guarantee that no unsafe
access occurs. The example below shows how to safely interlock an add operation on a numeric array
element.

Public my_lock As Integer
Public my_array(1) As Integer

Public Sub AddArray(ByVal inc As Integer)
 acquire_sem(my_lock) ' Prohibit access by other threads
 my_array(0) = my_array(0) + inc
 rel
End Sub

ease_sem(my_lock) ' Allow write access by other threads

For numeric values, the read operation is thread-safe, so no special action is required, but for a string
operation, both the read and write operations need to be interlocked. The example below shows
interlocking both the read and write operation for a string variable.

Public my_lock As Integer

Public Sub AppendString(ByRef sg As String, ByVal app As String)
 acquire_sem(my_lock) ' Prohibit access by other threads

77

Guidance Programming Language

 sg &= app ' Modify string while locked
 release_sem(my_lock) ' Allow access by other threads
End Sub

Public Function ReadString(ByRef sg As String) As String
 Dim ret_string As String
 acquire_sem(my_lock) ' Prohibit access by other threads
 ret_string = sg ' Copy string while locked
 release_sem(my_lock) ' Allow access by other threads
 Return ret_string
End Function

18. XML Data Exchange

18. XML Data Exchange

XML (eXtensible Markup Language) is a standard text formatting language derived from SGML (the
Standard Generalized Markup Language, ISO 8879). It was originally designed to represent documents
for electronic publishing, but it has been adapted to represent structured data for storage and
transmission on networks. Details about XML can be found at http://www.w3.org/XML. The complete
specifications for XML can be found at http://www.w3.org/XML/Core/#Publications.

The GPL implementation of XML is primarily intended to simplify the storage and bi-directional exchange
of structured data between a host computer and a Guidance Controller. For example, the information
contained in both simple and complex data structures (such as GPL Objects) can be easily and efficiently
converted to an XML text file. This file can be stored in flash or transmitted to a host computer where it
can be decoded using standard XML tools. Conversely, an XML file generated on a host computer can be
read by GPL and converted to a tree of information that is readily accessible by a GPL application
program. This data can be used to reconstruct application specific Objects or other data structures.

Given the intended use of XML, the GPL implementation does not include the extensive support required
for general document specification and editing. In particular, it has only limited support for namespaces
and entities.

The GPL methods and properties for handling XML are layered on top of the open-source libxml2 library,
available at http://xmlsoft.org. Links to documentation for this library may be found at that website.

The XML text file contains 7-bit ASCII or UTF-8 characters that encode the data. Symbols and strings
enclosed in < > have special meaning to XML.

The following lines illustrate some sample XML text:

<?xml version="1.0"?>
<procedureControl cellId="TestCell">
 <command>start</command>
</procedureControl>

The first line contains a comment indicating the XML version. The next line begins an entity named
procedureControl that has an attribute named cellId with a value of "TestCell". It is followed by a nested

78

The Guidance Programming Language

entity named command with the value of "start". The final line ends the procedureControl entity. Entities
and attributes are part of the Document Object Model described in the next section.

18.1. Document Object Model (DOM)

Because XML historically was designed for electronic publishing, a single, self-contained section of XML
is called a document, even though it may contain arbitrary data. GPL parses existing XML text documents
and creates new XML documents, by converting them to and from a tree structure stored in the
controller’s memory. A parsed XML document consists of nodes for items in the document, arranged in a
tree that reflects how items in the document are nested. The tree is constructed using a subset of the
Document Object Model (DOM) Core Interfaces as described in: http://www.w3.org/TR/REC-DOM-Level-
1 and methods similar to those found in Visual Basic.NET.

The top-level node in a DOM tree is the document node. There is only one such node for each document.
The organization of child nodes in the document corresponds to the organization of the data in the XML
text file. The various child nodes contain the names of the data sections and also the data from the text
document.

All nodes have a type. Some common types are shown in the table below.

Node Type Description
Document The top-level node in a document. Only one such node exists per DOM tree.

Element
The basic node type. An element corresponds to an XML tag that begins with
“<”. For example the element named sample begins with “<sample>” and ends
with “</sample>”.

Attribute

An attribute of a node. It normally has either a document or element as its
parent. In XML text, attributes are embedded inside the element name start
tag. For example an attribute named color of element sample appears as
<sample color=”value”>.

Text The data contents of an element or attribute. It holds whatever is between two
element tags, or the “value” of an attribute.

CDATA
section

A special text node that allows special characters in the data without encoding
them. The data starts with “<!CDATA[” and ends with “]]>”.

Comment A special text node that contains a comment not considered part of the
document data. The comment data begins with “<?--“ and ends with “-->”.

Processing
Instruction

A special text node that contains processor-specific information. The
information data begins with "<?" and ends with "?>".

When an XML text document is parsed, GPL creates a new DOM tree in the controller’s memory with
child nodes that contain all the parsed data. The XML classes and methods that are provided in GPL
allow an application program to efficiently access the data contained in the tree. If desired, the data in the
tree may be modified and written back out in the XML text format.

In order to create an XML text file, a GPL program must first create a new document tree in the
controller’s memory and add nodes that contain the desired data. An XML method can then be executed
that converts the tree in memory to the XML text format.

79

Guidance Programming Language

18.2. Character Representation

This GPL implementation expects all external character data to be encoded in UTF-8. Since 7-bit ASCII
characters are a subset of UTF-8, all data will be properly interpreted if you confine your data to the 7-bit
ASCII subset.

In addition, XML text files include certain special characters to delimit data sections. The critical
characters are " (double quote), & (ampersand), ' (apostrophe), < (less than), and > (greater than). You
must not use these characters in any name or data fields when creating tree nodes or setting node
values. For efficiency, GPL does not automatically check for these characters or convert them. If you
need to use these characters, you can encode them with the method XmlDoc.EncodeEntities. If you
receive data with encoded entities, you can change them to normal 7-bit ASCII with the method
XmlDoc.DecodeEntities.

18.3. XmlDoc Class

GPL includes an XmlDoc class. The objects of this class operate on the top-level of a DOM tree (which
contains an entire XML document). The XmlDoc methods deal with the document as a whole and, except
for a method that allocates new nodes, these methods do not operate on specific nodes in the DOM tree.
For example, this class includes the method for converting an XML text file into a DOM tree and a method
for the reverse operation.

There is one and only one XmlDoc object for each separate XML document that is represented as a
DOM tree. An XML DOM tree cannot exist without an XmlDoc object. When the last reference to an
XmlDoc object is freed, the entire DOM tree is also freed. Any XmlNode objects that refer to nodes in the
tree are marked as invalid.

The XmlDoc class interface is summarized in the following table. Each of these properties and methods
is described in detail in the GPL Dictionary contained in the Software Reference section of the Precise
Documentation Library.

XmlDoc Class Member Type Description

New Constructor
Method

Creates a new document tree with the specified
name.

xmldoc_obj.CreateNode Method Returns a new XmlNode object for this document
with the specified type, and name.

XmlDoc.DecodeEntities Shared
Method

Converts a String containing encoded XML
entities into raw text.

xmldoc_obj.
DocumentElement Method Returns the XmlNode element that is the root of

the document.

XmlDoc.EncodeEntities Shared
Method

Converts special characters in a String to XML
entities.

xmldoc_obj.ErrorCode Get Property Returns the last parser error code number, or 0 if
no error.

XmlDoc.LoadFile Shared
Method

Loads and parses an XML text document from a
file and returns the created XmlDoc DOM tree
object.

XmlDoc.LoadString Shared
Method

Parses an XML text document from a String and
returns the created XmlDoc DOM tree object.

xmldoc_obj.Message Get Property Returns the last parser error message, or “” if no
error.

xmldoc_obj.SaveFile Method Converts a DOM tree document to the XML text

80

The Guidance Programming Language

format and writes the data to a file.

xmldoc_obj.SaveString Method Converts a DOM tree document to the XML text
format and writes the data to a String.

18.4. XmlNode Class

GPL includes an XmlNode class that provides access to and manipulation of individual nodes within a
DOM tree.

XmlNode objects point to DOM nodes but do not actually contain the DOM nodes. When an XmlNode
object is created or destroyed, the underlying DOM nodes are not affected provided that they are part of a
DOM tree. If a DOM node is destroyed by releasing the top-level XmlDoc node or by releasing a parent
DOM node, the XmlNode object is automatically unlinked from the DOM node and any attempt to use the
XmlNode object results in an error.

The table below summarizes the properties and methods for the XmlNode class. Each of these
properties and methods is described in detail in the GPL Dictionary contained in the Software Reference
section of the Precise Documentation Library.

XmlNode Class Member Type Description
xmlnode_obj.AddAttribute Method Adds an attribute node as a child of this node.

xmlnode_obj.AddElement Method Adds an element node as a child of this node.
Includes an optional value.

xmlnode_obj.AddElementNode Method
Adds an element node as a child of this node.
Returns an XmlNode object for the new node.
Includes an optional value.

xmlnode_obj.AppendChild Method Appends a new child node as the last child of
this node. Merges text nodes.

xmlnode_obj.ChildNodeCount Get
Property Returns the number of children of this node.

xmlnode_obj.Clone Method Returns a clone of this node. Optionally
recursively clones the subtree under this node.

xmlnode_obj.FirstChild Method Returns the first child of this node.

xmlnode_obj.GetAttribute Method Returns a String containing the value of the
specified attribute that is a child of this node.

xmlnode_obj.GetAttributeNode Method Returns the node corresponding to the
specified attribute that is a child of this node.

xmlnode_obj.GetElement Method Returns a String containing the value of the
specified element that is a child of this node.

xmlnode_obj.GetElementNode Method Returns the node corresponding to the
specified element that is a child of this node.

xmlnode_obj.HasAttribute Method Returns True if the specified attribute is a child
of this node.

xmlnode_obj.HasChildNodes Get
Property

Returns True if the node has any non-attribute
child nodes.

xmlnode_obj.HasElement Method Returns True if a specified element is a child of
this node.

xmlnode_obj.InsertAfter Method Inserts a new node as a child of this node after
a referenced child node. Merges text nodes.

xmlnode_obj.InsertBefore Method Inserts a new node as a child of this node
before a referenced child node. Merges text

81

Guidance Programming Language

nodes.

xmlnode_obj LastChild Method Returns the last child of this node.

xmlnode_obj.Name Get
Property Returns the node name as a String.

xmlnode_obj.NextSibling Method Returns the next sibling of this node.
xmlnode_obj.OwnerDocument Method Returns the XmlDoc associated with this node.
xmlnode_obj.ParentNode Method Returns the parent of this node.
xmlnode_obj.PreviousSibling Method Returns the previous sibling of this node.

xmlnode_obj.RemoveAttribute Method Removes a specified attribute from this node's
children.

xmlnode_obj.RemoveChild Method Removes a child node from the list of children
for this node.

xmlnode_obj.RemoveElement Method Removes a specified element from this node's
children.

xmlnode_obj.ReplaceChild Method Replaces an old child node with a new child
node.

xmlnode_obj.SetAttribute Method Sets the value of an existing specified attribute
that is a child of this node.

xmlnode_obj.SetElement Method Sets the value of an existing specified element
that is a child of this node.

xmlnode_obj.Type Get
Property Returns the node type as a String.

xmlnode_obj.Value Method Returns the node value as a String or sets the
node value.

18.5. Examples

18.5.1. Reading an XML file

' Input parameter file contains the path to the file to read.
' Output parameter doc is an XmlDoc variable that receives the
' parsed XML document that is generated.

Public Sub XmlReadFile(ByVal file As String, ByRef doc As XmlDoc)
 Dim exc As Exception
 doc = XmlDoc.LoadFile(file)
 If (doc.ErrorCode <> 0) Then
 Console.Writeline("Input error " & CStr(doc.ErrorCode) _
 & ", " & doc.Message)
 exc = New Exception
 exc.ErrorCode = doc.ErrorCode
 Throw exc
 End If
End Sub

18.5.2. Writing an XML file

' Input parameter file contains the path to the file to write.
' Input parameter doc is an XmlDoc object that contains the
' document tree that is converted.

Public Sub XmlWriteFile(ByVal file As String, ByVal doc As XmlDoc)
 Dim exc As Exception
 Try

82

The Guidance Programming Language

 doc.SaveFile(file)
 Catch exc
 If doc.ErrorCode <> 0 Then
 Console.Writeline("Output error " & _
 CStr(doc.ErrorCode) & _
 ", " & doc.Message)
 End If
 Throw exc
 End Try
End Sub

18.5.3. Accessing data in an XML document tree

Assume we have an XML document tree that was generated from the following XML text:

<?xml version="1.0"?>
<procedureControl cellId="TestCell">
 <command>start</command>
 <procedure jobId="090507001" name="INS">
 <type>protocol</type>
 <testSet>INS_#_090507001</testSet>
 <index>0</index>
 </procedure>
</procedureControl>

The program below analyzes and displays part of the data contained in the tree.

Public Sub Xm ByVal doc As XmlDoc) lParse(

Dim root As XmlNode
 Dim command As XmlNode
 Dim proce As XmlNode dure
 Dim attr As XmlNode
 Dim ss As String
 root = doc.DocumentElement
 command = root.GetElementNode("command")
 procedure = root.GetElementNode("procedure")
 ss = root.GetAttribute("cellId")
 Console.Writeline("cellId = " & ss)
 ss = command.Value
 Console.Writeline("command = " & ss)
 ss = procedure.GetAttribute("jobId")
 Console.Writeline("jobId = " & ss)
 GetElement("type") ss = procedure.
 Console.Writeline " & ss) ("type =
 GetElement("testSet") ss = procedure.

Console.Writeline("typeSet = " & ss)
End Sub

The output produced is:

cellId = TestCell
command = start
jobId = 090507001
type = protocol
typeSet = INS_#_090507001

18.5.4. Searching for an element in the document

If you do not know the structure of a document, you can search for an element by recursively searching
through the tree until you find a match. This method is much slower than looking for an element where
you expect to find it.

83

Guidance Programming Language

Public Sub XmlSearchTree(ByVal node As XmlNode, _
 ByVal name As String, _
 ByRef found As XmlNode)
 Dim child As XmlNode
 found = Nothing
 If node.Name = name Then
 If node.Type = "element" Then
 Console.Writeline("Found " & name)
 found = node
 Return
 End If
 End If
 child = node.FirstChild
 While Not child Is Nothing
 XmlSearchTree(child, name, found) 'recursive call
 If Not d Is Nothing Then foun
 Return
 End If
 child = child.NextSibling
 End While
End Sub

18.5.5. Creating an XML document from a GPL program

The following program demonstrates how to create the XML document tree that corresponds to the XML
text shown above in the third example. If this document is output using the XmlWriteFile program, the
resulting XML text will be identical in content to the example except for indentation and line breaks.

Public Sub XmlCreate(ByRef doc As XmlDoc)
 Dim root As XmlNode
 Dim elem As XmlNode
 doc = New XmlDoc("procedureControl")
 root = doc.DocumentElement
 root.AddAttribute("cellId", "TestCell")
 root.AddElement "start") ("command",
 elem AddElementNode("procedure") = root.
 elem.AddAttribute("jobId", "090507001")
 elem.AddAttribute("name", "INS")
 elem.AddElement("type", "protocol")
 elem.AddElement("testSet", "INS_#_090507001")
 elem.AddElement("index", "0")
End Sub

18.6. Error Handling

Errors that occur while parsing an XML text document to create a DOM tree or that occur while generating
XML text from an existing DOM tree are accessed by properties of the associated XmlDoc object. The
XmlDoc ErrorCode property contains the last error generated by a major XML operation. These
operations include the LoadString and SaveString methods. Typically, such XML methods generate
much more detailed error information than is reflected in a simple error code. If an XML method
generates an error, the XmlDoc Message method should be examined for additional detailed error
information.

For example, the error code -799 "XML error" has a secondary error number associated with it. To
determine the meaning of the error, check the XmlDoc Message method.

Only severe parsing errors throw an exception, so it is required that the application software test the
ErrorCode method after the LoadFile or LoadString methods are executed.

84

The Guidance Programming Language

See the individual XmlNode dictionary pages for specifies on each method. In general, if a method
returns an XmlNode value, the value will be set to Nothing if an error occurs, otherwise, the method
throws an exception.

The error -801 "No XML node" occurs if you attempt to access a GPL XML object that is not associated
with any XML tree node. This situation can occur if you have an XmlNode object that refers to a node,
and then you remove the part of the XML tree that contains that node. For example, this can occur if you
release the XmlDoc object that contains the entire document or you use the XmlNode RemoveChild
method for the referenced node or one of its parents.

19. Misc. Unsupported Features
GPL does not support conditional compilation and its associated directives, e.g. #If.

85

	The Guidance Programming Language
	1. GPL Overview
	2. Statement structure
	3. Data Type and Variables
	3.1. Basic Data Types
	3.2. Variable Declarations
	3.3. Data Type Arrays
	3.4. Scope of Names

	4. Objects and Classes
	4. Objects and Classes
	4.1. Objects, Fields, Properties and Methods
	4.2. Classes of Objects
	4.3. The Dot “.” Operator
	4.4. Object Variables and the New Clause
	4.5. Copying Object Variables and Values
	4.6. Objects as Procedure Arguments
	4.7. User-Defined Classes
	4.8. Limitations

	5. Arithmetic Operations
	5.1. Arithmetic Expressions
	5.2. Arithmetic Functions and Methods

	6. Strings and String Expressions
	7. Assignment Statements
	8. Control Structures
	9. Procedures, Delegates and Modules
	9.1. Subroutines and Functions
	9.2. Delegates
	9.3. Modules

	10. Exception Handling
	11. Motion and Controller Related Classes
	11. Motion and Controller Related Classes
	11.1. Signal Class
	11.2. Location Class and Objects
	11.3. Profile Class and Objects
	11.4. Move Class
	11.5. RefFrame Class and Objects
	11.6. Controller Class
	11.7. Robot Class
	11.8. Latch Class

	12. Networking Communications
	12. Networking Communications
	12.1. Networking Definitions and Classes
	12.2. TCP Server
	12.3. TCP Client
	12.4. UDP Server and Client

	13. MODBUS/TCP Communications
	13. MODBUS/TCP Communications
	13.1. Modbus Class
	13.2. Modbus Master Connection
	13.3. Modbus Master Examples

	14. File I/O, Serial I/O and Streams
	14. File I/O, Serial I/O and Streams
	14.1. Classes and Methods
	14.2. File I/O
	14.3. Serial I/O
	14.4. Console Output
	14.5. Non-Volatile Memory (NVRAM)

	15. Vision Guidance
	15. Vision Guidance
	15.1. Classes and Methods
	15.2. Vision Interface
	15.3. Vision Procedure Example

	16. Managing and Executing GPL Projects
	17. Thread Control
	17. Thread Control
	17.1. Thread Synchronization
	17.2. Thread Scheduling
	17.3. The Thread Class
	17.4. Thread-Safe Data Access in GPL

	18. XML Data Exchange
	18. XML Data Exchange
	18.1. Document Object Model (DOM)
	18.2. Character Representation
	18.3. XmlDoc Class
	18.4. XmlNode Class
	18.5. Examples
	18.6. Error Handling

	19. Misc. Unsupported Features

