

Guidance Programming Language

GP s
Version 3.1.0, April 5, 2012

P/N: GPL0-DI-00110

Precise Automation Inc., 727 Filip Road, Los Altos, California 94024
www.preciseautomation.com

L Dictionary Page

Document Content

The information contained herein is the property of Precise Automation Inc., and may not be copied,
photocopied, reproduced, translated, or converted to any electronic or machine-readable form in whole or
in part without the prior written approval of Precise Automation Inc. The information herein is subject to
change without notice and should not be construed as a commitment by Precise Automation Inc. This
information is periodically reviewed and revised. Precise Automation Inc. assumes no responsibility for
any errors or omissions in this document.

Copyright © 2004-2012 by Precise Automation Inc. All rights reserved.

The Precise Logo is a registered trademark of Precise Automation Inc.

Trademarks

Guidance 3400, Guidance 3300, Guidance 3200, Guidance 2600, Guidance 2400, Guidance 2300,
Guidance 2200, Guidance 1400, Guidance 1300, Guidance 1200, Guidance 0200 Slave Amplifier,
Guidance 0006, Guidance 0004, Guidance Controller, Guidance Development Environment, GDE,
Guidance Development Suite, GDS, Guidance Dispense, Guidance Programming Language, GPL,
Guidance System, Guidance System D4/D6, PrecisePlace 1300, PrecisePlace 1400, PrecisePlace 2300,
PrecisePlace 2400, PreciseFlex 400, PreciseFlex 1300, PreciseFlex 1400, PrecisePower 300,
PrecisePower 500, PrecisePower 2000, PreciseVision, RIO are either registered or trademarks of Precise
Automation Inc., and may be registered in the United States or in other jurisdictions including
internationally. Other product names, logos, designs, titles, words or phrases mentioned within this
publication may be trademarks, service marks, or trade names of Precise Automation Inc. or other entities
and may be registered in certain jurisdictions including internationally.

Any trademarks from other companies used in this publication are the property of those respective
companies. In particular, Visual Basic, Visual Basic 6 and Visual Basic.NET are trademarks of Microsoft
Inc.

Disclaimer

PRECISE AUTOMATION INC., MAKES NO WARRANTIES, EITHER EXPRESSLY OR IMPLIED,
REGARDING THE DESCRIBED PRODUCTS, THEIR MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. THIS EXCLUSION OF IMPLIED WARRANTIES MAY NOT APPLY TO YOU.
PLEASE SEE YOUR SALES AGREEMENT FOR YOUR SPECIFIC WARRANTY TERMS.

Precise Automation Inc.
727 Filip Road
Los Altos, California 94024
U.S.A.
www.preciseautomation.com

Warning Labels

The following warning and caution labels are utilized throughout this manual to convey critical information
required for the safe and proper operation of the hardware and software. It is extremely important that all
such labels are carefully read and complied with in full to prevent personal injury and damage to the
equipment.

There are four levels of special alert notation used in this manual. In descending order of importance,
they are:

DANGER: This indicates an imminently hazardous situation,
which, if not avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous situation, which,
if not avoided, could result in serious injury or major damage to the
equipment.

CAUTION: This indicates a situation, which, if not avoided, could
result in minor injury or damage to the equipment.

 NOTE: This provides supplementary information, emphasizes a
point or procedure, or gives a tip for easier operation

Table Of Contents
GPL Dictionary Pages Summary ...1

Array Class ..3

Array Class Summary 3

array.GetUpperBound Property 4

array.Length Property 5

array.Rank Property 6

Console Class ...7

Console Class Summary 7

Console.Write Method 8

Console.WriteLine Method 9

Controller Class ..10

Controller Class Summary 10

Controller.Command Method 12

Controller.ErrorLog Property 14

Controller.Load Method 16

Controller.PDb Property 17

Controller.PDbNum Property 19

Controller.PowerEnabled Property 21

Controller.PowerState Property 23

Controller.RecordButton Property 25

Controller.ShowDialog Method - Basic Modes 26

Controller.ShowDialog Method - Advanced Mode 30

Controller.ShowDialogMCP Method 34

Controller.SleepTick Method 37

Controller.SoftEStop Property 38

Controller.SystemMessage Method 39

Controller.SystemSpeed Property 40

Controller.Tick Property 41

Controller.Timer Property 42

Controller.Unload Method 43

Exception Handling...44

iv

Table Of Contents

Exception Handling Summary 44

Catch Statement 46

End Try Statement 47

Exit Try Statement 48

Finally Statement 49

Throw Statement 50

Try..Catch..Finally..End Try Statements 52

exception_object.Axis Property 55

exception_object.Clone Method 56

exception_object.ErrorCode Property 57

exception_object.Message Method 58

exception_object.Qualifier Property 59

exception_object.RobotError Property 60

exception_object.RobotNum Property 61

exception_object.UpdateErrorCode Method 62

File and Serial I/O Classes ...64

File and Serial I/O Classes Summary 64

File.CreateDirectory Method 66

File.DeleteDirectory Method 67

File.DeleteFile Method 68

File.GetDirectories Method 69

File.GetFiles Method 70

New StreamReader Constructor 71

streamreader_object.Close Method 72

streamreader_object.Peek Method 73

streamreader_object.Read Method 74

streamreader_object.ReadLine Method 75

New StreamWriter Constructor 76

streamwriter_object.AutoFlush Property 77

streamwriter_object.Close Method 78

streamwriter_object.Flush Method 79

streamwriter_object.NewLine Property 80

streamwriter_object.Write Method 81

streamwriter_object.WriteLine Method 82

Functions ...83

v

GPL Dictionary Pages

Function Summary 83

CBool Function 84

CByte Function 86

CDbl Function 88

CInt Function 90

CShort Function 92

CSng Function 94

CStr Function 96

Fix Function 98

Hex Function 100

Int Function 102

Rnd Function 104

Latch Class ..106

Latch Class Summary 106

latch_object.Angle Property 108

Latch.Count Shared Property 109

Latch.Flush Shared Method 110

latch_object.Location Method 111

Latch.Result Shared Method 112

latch_object.Signal Property 113

Latch.ThreadEvent Shared Property 115

latch_object.Timestamp Property 117

Location Class...119

Location Class Summary 119

location_object.Angle Property 121

location_object.Angles Method 122

location_object.Clone Method 123

location_object.Config Property 124

location_object.ConveyorLimit Method 126

Location.Distance Method 128

location_object.Here Method 129

location_object.Here3 Method 131

location_object.Inverse Method 133

location_object.KineSol Method 134

location_object.Mul Method 136

vi

Table Of Contents

location_object.Normalize Method 138

location_object.Pitch Property 139

location_object.Pos Property 141

location_object.PosWrtRef Property 143

location_object.RefFrame Property 145

location_object.Roll Property 146

location_object.Text Property 148

location_object.Type Property 149

location_object.X Property 150

location_object.XYZ Method 152

location_object.XYZInc Method 154

Location.XYZValue Method 155

location_object.Y Property 157

location_object.Yaw Property 159

location_object.Z Property 161

location_object.ZClearance Property 163

location_object.ZWorld Property 165

Math Class ...167

Math Class Summary 167

Math.Abs Method 169

Math.Acos Method 170

Math.Asin Method 171

Math.Atan Method 172

Math.Atan2 Method 173

Math.Ceiling Method 174

Math.Cos Method 175

Math.Cosh Method 176

Math.E Method 177

Math.Exp Method 178

Math.Floor Method 179

Math.Log Method 180

Math.Log10 Method 181

Math.Max Method 182

Math.Min Method 183

Math.PI Method 184

Math.Pow Method 185

vii

GPL Dictionary Pages

Math.Sign Method 186

Math.Sin Method 187

Math.Sinh Method 188

Math.Sqrt Method 189

Math.Tan Method 190

Math.Tanh Method 191

Modbus Class..192

Modbus Class Summary 192

modbus_object.Close Method 193

modbus_object.ReadCoils Method 194

modbus_object.ReadDeviceID Method 195

modbus_object.ReadDiscreteInputs Method 197

modbus_object.ReadHoldingRegisters Method 198

modbus_object.ReadInputRegisters Method 200

modbus_object.Timeout Property 202

modbus_object.WriteMultipleCoils Method 203

modbus_object.WriteMultipleRegisters Method 204

modbus_object.WriteSingleCoil Method 205

modbus_object.WriteSingleRegister Method 206

Move Class ..207

Move Class Summary 207

Move.Approach Method 209

Move.Arc Method 211

Move.Circle Method 214

Move.Delay Method 217

Move.Extra Method 218

Move.ForceOverlap Method 220

Move.Loc Method 224

Move.OneAxis Method 226

Move.Rel Method 228

Move.SetJogCommand Method 230

Move.SetRealTimeMod Method 232

Move.SetSpeeds Method 234

Move.SetTorques Method 236

Move.StartJogMode Method 238

viii

Table Of Contents

Move.StartRealTimeMod Method 240

Move.StartSpeedDAC Method 245

Move.StartTorqueCntrl Method 249

Move.StartVelocityCntrl Method 251

Move.StopSpecialModes Method 254

Move.Trigger Method 255

Move.WaitForEOM Method 258

Networking Classes ..259

Networking Classes Summary 259

New IPEndPoint Constructor 261

ipendpoint_object.IPAddress Property 262

ipendpoint_object.Port Property 263

socket_object.Available Property 264

socket_object.Blocking Property 265

socket_object.Close Method 266

socket_object.Connect Method 267

socket_object.KeepAlive Property 268

socket_object.Receive Method 270

socket_object.ReceiveFrom Method 271

socket_object.ReceiveTimeout Property 273

socket_object.Send Method 274

socket_object.SendTimeout Property 275

socket_object.SendTo Method 276

New TcpClient Constructor 278

tcpclient_object.Client Method 279

tcpclient_object.Close Method 280

New TcpListener Constructor 281

tcplistener_object.AcceptSocket Method 282

tcplistener_object.Close Method 283

tcplistener_object.Pending Property 284

tcplistener_object.Start Method 285

tcplistener_object.Stop Method 286

New UdpClient Constructor 287

udpclient_object.Client Method 288

udpclient_object.Close Method 289

Profile Class ..290

ix

GPL Dictionary Pages

Profile Class Summary 290

profile_object.Accel Property 292

profile_object.AccelRamp Property 294

profile_object.Clone Method 296

profile_object.Decel Property 297

profile_object.DecelRamp Property 299

profile_object.InRange Property 301

profile_object.Speed Property 303

profile_object.Speed2 Property 305

profile_object.Straight Property 307

profile_object.Text Property 309

Reference Frame Class ..310

RefFrame Class Summary 310

refframe_object.ConveyorOffset Property 313

refframe_object.ConveyorRobot Property 315

refframe_object.Loc Property 316

refframe_object.PalletIndex Property 318

refframe_object.PalletMaxIndex Property 320

refframe_object.PalletNextPos Method 322

refframe_object.PalletOrder Property 324

refframe_object.PalletPitch Property 326

refframe_object.PalletRowColLay Method 327

refframe_object.Pos Method 329

refframe_object.PosWrtRef Method 331

refframe_object.Text Property 333

refframe_object.Type Property 334

Robot Class ...336

Robot Class Summary 336

Robot.Attached Property 339

Robot.Base Property 340

Robot.CartMode Property 342

Robot.Custom Property 344

Robot.DefLinComp Method 346

Robot.Dest Property 348

Robot.DestAngles Property 350

x

Table Of Contents

Robot.Home Method 352

Robot.HomeAll Method 353

Robot.JointToMotor Method 354

Robot.LastProfile Property 356

Robot.MotorTempStatus Property 357

Robot.MotorToJoint Method 359

Robot.Payload Property 361

Robot.RapidDecel Property 363

Robot.RealTimeModAcm Property 364

Robot.RestartBase Property 366

Robot.RestartTool Property 367

Robot.Selected Property 368

Robot.Source Property 369

Robot.SourceAngles Property 371

Robot.SpeedAngles Property 373

Robot.Tool Property 375

Robot.TrajState Property 377

Robot.Where Property 380

Robot.WhereAngles Property 382

Signal Class...384

Signal Class Summary 384

Signal.AIO Property 385

Signal.DIO Property 387

Statements...390

Statements Summary 390

Call Statement 392

Case, Case Else Statements 394

Class Statement 395

Const Statement 396

Delegate Statement 398

Dim Statement 400

Do...Loop Statements 402

Else, ElseIF Statements 404

End Statements 405

Exit Statements 406

xi

GPL Dictionary Pages

For...Next Statements 407

Function Statement 410

Get Statement 413

GoTo Statement 414

If..Then...Else...End If Statements 416

Loop Statements 418

Module Statement 419

Next Statements 420

Property Statement 421

ReDim Statement 424

Return Statement 425

Select...Case...End Select Statements 426

Set Statement 428

Sub Statement 430

While...End While Statements 432

Strings..434

String Summary 434

String.Compare Method 436

string.IndexOf Method 438

string.Length Property 440

string.Split Method 441

string.Substring Method 442

string.ToLower Method 443

string.ToUpper Method 444

string.Trim Method 445

string.TrimEnd Method 446

string.TrimStart Method 447

Asc Function 448

Chr Function 449

Format Function 450

FromBitString Function 453

Instr Function 455

LCase Function 457

Len Function 458

Mid Function 459

ToBitString Function 460

xii

Table Of Contents

UCase Function 462

Thread Class..463

Thread Class Summary 463

New Thread Constructor 465

thread_object.Abort Method 467

thread_object.Argument Property 468

Thread.CurrentThread Shared Method 469

thread_object.Join Method 470

thread_object.Name Property 471

thread_object.Project Property 472

thread_object.Resume Method 473

Thread.Schedule Shared Method 474

thread_object.SendEvent Method 478

Thread.Sleep Shared Method 479

thread_object.Start Method 480

thread_object.StartProcedure Property 481

thread_object.Suspend Method 482

Thread.TestAndSet Shared Method 483

thread_object.ThreadState Property 485

Thread.WaitEvent Shared Method 486

Vision Classes...489

Vision Classes Summary 489

vision_object.Disconnect Method 491

vision_object.ErrorCode Property 492

vision_object.Instance Property 493

vision_object.IPAddress Property 494

vision_object.Process Method 495

vision_object.Result Method 497

vision_object.ResultCount Method 499

vision_object.Status Property 501

vision_object.ToolProperty Property 502

visresult_object.ErrorCode Property 507

visresult_object.Info Property 508

visresult_object.InfoCount Property 509

visresult_object.InfoString Property 510

xiii

GPL Dictionary Pages

visresult_object.InspectActual Property 511

visresult_object.InspectPassed Property 512

visresult_object.Loc Property 513

visresult_object.Type Property 515

XML Classes ..516

XML Classes Summary 516

New XmlDoc Constructor 519

xmldoc_object.CreateNode Method 520

XmlDoc.DecodeEntities Shared Method 522

xmldoc_object.DocumentElement Method 524

XmlDoc.EncodeEntities Shared Method 525

xmldoc_object.ErrorCode Property 527

XmlDoc.LoadFile Shared Method 528

XmlDoc.LoadString Shared Method 530

xmldoc_object.Message Property 532

xmldoc_object.SaveFile Method 533

xmldoc_object.SaveString Method 535

xmlnode_object.AddAttribute Method 537

xmlnode_object.AddElement Method 538

xmlnode_object.AddElementNode Method 539

xmlnode_object.AppendChild Method 540

xmlnode_object.ChildNodeCount Property 541

xmlnode_object.Clone Method 542

xmlnode_object.FirstChild Method 543

xmlnode_object.GetAttribute Method 544

xmlnode_object.GetAttributeNode Method 545

xmlnode_object.GetElement Method 546

xmlnode_object.GetElementNode Method 547

xmlnode_object.HasAttribute Method 548

xmlnode_object.HasChildNodes Property 549

xmlnode_object.HasElement Method 550

xmlnode_object.InsertAfter Method 551

xmlnode_object.InsertBefore Method 553

xmlnode_object.LastChild Method 555

xmlnode_object.Name Property 556

xmlnode_object.NextSibling Method 557

xiv

Table Of Contents

xmlnode_object.OwnerDocument Method 558

xmlnode_object.ParentNode Method 559

xmlnode_object.PreviousSibling Method 560

xmlnode_object.RemoveAttribute Method 561

xmlnode_object.RemoveChild Method 562

xmlnode_object.RemoveElement Method 563

xmlnode_object.ReplaceChild Method 564

xmlnode_object.SetAttribute Method 566

xmlnode_object.SetElement Method 567

xmlnode_object.Type Property 568

xmlnode_object.Value Property 570

xv

GPL Dictionary Pages Summary
The Guidance Programming Language Dictionary Pages provide detailed information on each instruction,
keyword, function, and class property and method that is available in GPL. For convenience, these
descriptions are group either by their class or by their major function. Within each group they are sorted
alphabetically.

In general, instruction names, keywords, function names, group names, and property and method names
are indicated in bold. User specified variable names are indicated in italics. Sample GPL program
snippets are presented in the Courier font.

The following table summarizes each of the major groups of descriptions.

Group Description
Array Class Provides the properties of any type of variable array.

Console Class Provides methods for performing output to the serial
console or to the GDE console window.

Controller Class
Provides access to general facilities provided by the
motion control hardware such as power control, timers,
etc.

Exception Handling Includes statements for fielding execution exceptions and
the Exception Class for storing exception information.

File and Serial I/O Classes
Provides File, StreamReader and StreamWriter classes
that implement file and serial line input and output
communications.

Functions Includes standard functions, such as conversion routines,
that do not fall into a specific class.

Latch Class
Provides access to the results of latch input events,
including the time and robot position when the latch
occurred.

Location Class Defines positions and orientations of the robot and
objects.

Math Class Provides the standard arithmetic and trigonometric
functions.

Modbus Class
Permits programs to communicate with other intelligent
devices using the MODBUS/TCP Ethernet communication
protocol.

Move Class Provides the basic methods for executing a motion
between Locations using Profiles.

Networking Classes

Classes for Ethernet network communications. Includes
IPEndPoint Class for specifying IP and port addresses;
Socket Class that provides basis for networking I/O
operations; TcpListener Class for TCP server
applications; TcpClient Class for TCP client applications;
and UdpClient Class for UDP server and client
applications.

Profile Class Defines sets of parameters that specify the trajectory to be
followed when moving between Locations.

RefFrame Class
Defines robot and part reference frames. Cartesian
Locations and RefFrames can be defined with respect to
a RefFrame.

1

GPL Dictionary Pages

Robot Class Provides access to the attributes and properties of each
robot such as their current position and homing methods.

Signal Class Reads and writes digital, analog and other simple means
of input and output.

Statements Includes control structures, user procedures and functions,
and other common language elements.

Strings Provides String manipulation methods in an Object
oriented fashion.

Thread Class Provides the means for starting, stopping, and monitoring
the execution of independent threads.

Vision Classes Provides the means for interfacing to PreciseVision and
easily generating vision-guided motion applications.

XML Classes

Provides the ability to create, parse, and modify XML
(eXtensible Markup Language) documents. This facility
enables structured data to be bi-directionally exchanged
with a host computer using a standard data format.

2

Array Class
Array Class Summary

The following pages provide detailed information on the properties and methods of the
Array Class.

Array variables of all types (e.g. Strings, Locations, Integers) are members of the built-
in Array Class. You can use the properties of this class to determine the properties of an
array.

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member Type Description

array.GetUpperBound Get Property

Returns the upper bound for a particular
dimension of an array. The lower bound is
always 0, so the total number of elements in
this dimension is one greater than the upper
bound.

array.Length Get Property Returns the total number of elements in the
entire array, in all dimensions.

array.Rank Get Property Returns the array rank, which is the number of
dimensions in an array.

3

GPL Dictionary Pages

array.GetUpperBound Property

Returns the maximum allowed array index for a particular dimension of an array.

...array.GetUpperBound(dimension)

Prerequisites

None

Parameters

dimension

A required numeric expression that specifies the index, from 0 to rank-1,
of the dimension whose upper bound should be returned.

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. This upper
bound is the same value specified in a Dim or ReDim statement. The number of
elements in an array dimension is 1 plus the upper bound value.

Examples

Dim array(3 As Integer,4)
Dim d1, d2 As Integer
d1 = array.GetUpperBound(0) ' Returns the value 3
d2 = array.GetUpperBound(1) ' Returns the value 4

See Also

Array Class | array.Length | Dim Statement | ReDim Statement

4

Array Class

array.Length Property

Returns the total number of elements in an entire array.

...array.Length

Prerequisites

None

Parameters

None

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. The Length
may be computed by multiplying (1+upper bound) of all array dimensions.

Do not be confused when using the Length property with String arrays. For example, if
you declare: Dim sarray(3) As String.

sarray.Length is the number of elements in the array, in this case 4
(from 0 to 3).
sarray(0).Length is the length of the string contained in sarray(0), initially
0.

Examples

Dim array(3,4) As Integer
Dim length As Integer
length = array.Length ' Returns the value 20 = (1+3)*(1+4)

See Also

Array Class | array.GetUpperBound| Dim Statement | ReDim Statement

5

GPL Dictionary Pages

array.Rank Property

Returns the total number of dimensions (the rank) in the array.

...array.Rank

Prerequisites

None

Parameters

None

Remarks

The Rank of an array is the number of dimensions in that array.

Examples

Dim array(3,4) As Integer
Dim array2(As Integer5)
Dim r1, r2 As Integer
r1 = array.Rank
r2 = array2.

 ' Returns 2
Rank ' Returns 1

See Also

Array Class | Dim Statement | ReDim Statement

6

Console Class
Console Class Summary

The following pages provide detailed information on the methods of the global Console
Class. These methods support simple output to the GPL console.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/com1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member Type Description

Console.Write Shared
Method

Writes a number or a string to the console.

Console.WriteLine Shared
Method

Writes a number or a string to the console,
followed by a line feed (LF) character.

7

GPL Dictionary Pages

Console.Write Method

Writes a numeric or string value to the GPL console with no line terminator.

Console.Write (number)
-or-
Console.Write (string)

Prerequisites

None

Parameters

number

A required numeric expression whose value is displayed.

string

A required string expression whose value is displayed.

Remarks

This method writes a single numeric or string value to the GPL console with no line
terminator. Subsequent output continues on the same line. For output that combines
both string and numeric values, use the CStr function.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/com1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

Examples

Console.Write("Test ") ' Produces the output: "Test 1"
Console.Write(1)

See Also

Console Class | Console.WriteLine | CStr Function | StreamWriter Class

8

Console Class

Console.WriteLine Method

Writes a numeric or string value to the GPL console followed by a line terminator.

Console.WriteLine (number)
-or-
Console.WriteLine (string)

Prerequisites

None

Parameters

number

A required numeric expression whose value is displayed.

string

A required string expression whose value is displayed.

Remarks

This method writes a single numeric or string value to the GPL console followed by a line
terminator. Subsequent output appears on the next line. For output that combines both
string and numeric values, use the CStr function.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/com1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

Examples

Console.WriteLine("Test ") ' Produces the output: Test
Console.WriteLine(1) ' 1

Dim ii As Integer
For ii = 1 To 10
 Console.WriteLine("The square of " & CStr(ii) _

Next ii

 & " is " & CStr(ii*ii))

See Also

Console Class | Console.Write | CStr Function | StreamWriter Class

9

Controller Class
Controller Class Summary

The following pages provide detailed information on the properties and methods of the
global Controller Class. This class provides access to the general facilities provided by
the Guidance Controller, e.g. high power control, E-Stop logic, configuration database
values, etc. As such, this class and all of its members are uniquely defined for Precise
controller products and do not conform to any other standards. In the case of certain
methods, such as the SleepTick, very similar functionality is provided by other means
within the Basic language. However, the members of this class were selected based
upon ease-of-use considerations or because they provide some slightly different, but
important, functionality.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer,
Single, Double, are automatically performed as required. So, for numeric properties and
methods of the Controller Class, it is not necessary to have different variations of these
members to deal with the different possible mixes of input parameter data types. Also, as
appropriate, the properties and methods generally produce results that are formatted as
Double’s. These results will automatically be converted to smaller data types as
necessary, e.g. Double -> Integer, and will not generate an error so long as numeric
overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description

Controller.Command Method Executes a console command and returns
any output as a String value.

Controller.ErrorLog Property Returns an entry from the system Error Log
as a String value or clears the Error Log.

Controller.Load Method Loads a GPL project into memory and
compiles it in preparation for execution.

Controller.PDb Property Sets and gets any accessible value in the
configuration parameter database.

Controller.PDbNum Property
Optimized means to set and get a numeric
value in the configuration parameter
database.

Controller.PowerEnabled Property
Sends a request to either turn on or off high
(motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerState Property Gets the current state of the high power
sequence.

Controller.RecordButton Property
Sets and gets the latched Boolean value
that indicates if the hardware MCP
RECORD button has been pressed.

Controller.ShowDialog - Basic Method Displays a pop-up dialog box on the web
Operator Control Panel.

Controller.ShowDialog -
Advanced Method Displays a pop-up dialog box on the web

Operator Control Panel.
Controller.ShowDialogMCP Method Displays a pop-up dialog box on the LCD

10

Controller Class

display of the Precise Hardware Manual
Control Pendant.

Controller.SleepTick Method
Delays further execution of a thread for a
specified number of Trajectory Generator
periods.

Controller.SoftEStop Property Sets and gets the Boolean flag that
triggers a Soft E-Stop.

Controller.SystemMessage Method
Enters a message into the GPL system
message log that is displayed on the web
Operator Control Panel.

Controller.SystemSpeed Property Sets and gets the property that can reduce
the speed of all robot motions.

Controller.Tick Property Gets the execution repetition period for the
Trajectory Generator.

Controller.Timer Property Gets the value of the controller’s usec clock
in units of seconds.

Controller.Unload Method Unloads an idle GPL project from memory.

11

GPL Dictionary Pages

Controller.Command Method

Executes a console command and returns the command output as a string.

... Controller.Command(command_string)

Prerequisites

None

Parameters

command_string

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these String
elements. The value of the string is interpreted as a standard Console
Command.

Remarks

This method executes the Console Command defined by the command_string
parameter. For a list of valid commands, please see the Console Command section of
the Documentation Library.

If the command requires additional data, the command_string must contain the command
definition followed by an ASCII line-feed character (GPL constant GPL_LF, numeric
value 10), followed by the additional data. Multiple lines of data may be supplied in the
same manner.

This method returns a string value that contains any output generated by the command,
followed by the command status. Each line of output is terminated by an ASCII line-feed
character. The final line of output is always a status string, followed by a line-feed. If the
command generated no output, the string value contains only the status followed by a
line-feed.

The status string is an ASCII value that contains:

• A numeric status code. 0 means success, < 0 indicates a standard error code.
• A text string enclosed in quotes corresponding to the numeric status code.

Be careful about issuing a command that could generate a large amount of output such
as a DataLog or Type command. Such a command could consume all available free
storage and cause your system to stop with "No memory available" errors.

Examples

12

Controller Class

Dim s As Strings
ss = Controller.Command("directory")
Console.WriteLine(ss)

 Displays the output:

 dev
 ROMDISK
 flash
 GPL
 0,"Success"

ss =
Console.WriteLine(ss)

Controller.Command("directory xyz")

 Displays the output:

 -508,"*File not found*"

See Also

Controller Class

13

GPL Dictionary Pages

Controller.ErrorLog Property

Returns an entry from the system Error Log as a String value or clears the Error Log.

Controller.ErrorLog = <value>
-or-
... Controller.ErrorLog(entry)

Prerequisites

None

Parameters

entry

A required numeric expression that specifies the Integer number of the
Error Log entry to be returned. This value can range from 1 to n, where
1 indicates that the most recent entry should be returned.

Remarks

Whenever a runtime error occurs in the system, the error is time stamped and entered
into the system Error Log. These errors can be generated by an executing thread or from
the motion control system. In addition, GPL applications can enter items into the log
using the Controller.SystemMessage method.

The entries in the Error Log are displayed on the web based Operator Control Panel and
can be retrieved from the console interface.

This method permits GPL programs to retrieve entries from the Error Log one at a time.
Each returned value contains the time stamp, marker indicating the thread that generated
the error, the numeric error code and the text error message. A example of a typical
returned value is as follows:

04-09-2007 12:27:14.223, Trj, -1611, "*Auto/Manual switch set to Manual*"

If you request an entry that does not exist, an empty string value is returned. Also, if a
new entry is added to the log or the log is cleared as you are scanning through the log,
you may get an inconsistent set of error entries.

If this property is assigned a non-zero value as indicated above, rather than retrieving an
entry, all entries are deleted from the Error Log.

Examples

Dim err As String
Dim ii As Integer
For ii = 1 To 100

14

Controller Class

 err = Controller.ErrorLog(ii) ' Retrieve all entries from log
 If (err <> "") Then
 Console.WriteLine(err) ' Display all errors
 Else
 Exit For ' No more entries in the log
 End If
Next
Controller.ErrorLog = 1 ' Clear all entries in the log

See Also

Controller Class | Controller.SystemMessage

15

GPL Dictionary Pages

Controller.Load Method

Loads the files associated with a GPL project into memory and compiles them so that the
project procedures are ready to be executed.

Controller.Load(project_folder_path)

Prerequisites

The project folder must contain a valid project file named Project.gpr. This project file
describes all the remaining files within the project. The project must not be currently
loaded.

Parameters

project_folder_path

A required string expression that specifies the name of the folder that
contains the project to be loaded. Normally the folder is located on the
"/flash" device.

Remarks

This method loads a project by first creating a folder in the controller's memory section
that is allocated for GPL projects. Then, all of the files associated with the project are
copied into the memory folder. Finally, the project is compiled so that the loaded
procedures are ready to be executed.

No compilation errors are displayed on the console. Examine the file
/GPL/project_name/Compile.log for a listing of compiler messages.

This method will throw an exception if the project cannot be loaded, if it is already loaded,
or if compilation errors occur.

Examples

Dim th As Thread
Controller.Load("/flash/projects/Test")
th = New Thread("Main", "Test", "Thread2")
th.Start()

See Also

Controller Class | Controller.Unload | Thread.Start

16

Controller Class

Controller.PDb Property

Sets and gets any accessible value in the configuration parameter database.

Controller.PDb(dataid, unit, unit2, array_index) = <new_string_value>
-or-
... Controller.PDb(dataid, unit, unit2, array_index)

Prerequisites

None

Parameters

dataid

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

unit

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

unit2

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just defaulted
to 1.

array_index

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
0, which reads all possible array values.

Remarks

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter

17

GPL Dictionary Pages

database. Controller.PDb can be used to read or write all accessible values in the
parameter database.

Controller.PDb reads parameters and returns the results in a String or writes
parameters by accepting a String expression. If the parameter contains numeric values,
the values are represented as text numbers separated by commas (in the case of
numeric arrays). If the parameter contains a single string value, the value is read into or
read from a GPL String without delimiting quotation marks. If the parameter contains an
array of strings, each string is delimited by double quotes and sequential values are
separated by commas.

As a convenient for developing custom web pages, the parameter database contains a
series of "GPL program strings" (DataID's 1800-1819) and "GPL program variable's"
(DataID's 1850-1869). Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

WARNING: While database values can be freely read, care should
be taken when writing to general database parameters.
Unintentionally altering some values may cause the system to not
operate properly.

Examples

Dim stg As String

Controller.PDb(541) = """Label1"",""Label2""" ' Sets first two DOUT labels

stg = Controller.PDb(100) ' stg set to "Precise Automation
Inc"

See Also

Controller Class | Controller.PDbNum

18

Controller Class

Controller.PDbNum Property

Optimized means for setting and getting a numeric value in the configuration parameter
database.

Controller.PDbNum(dataid, unit, unit2, array_index) = <new_value>
-or-
... Controller.PDbNum(dataid, unit, unit2, array_index)

Prerequisites

Can only access numeric parameter database values.

Parameters

dataid

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

unit

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

unit2

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just defaulted
to 1.

array_index

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
1, the first array element.

Remarks

19

GPL Dictionary Pages

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter
database. Controller.PDbNum is an variation of Controller.PDb that has been
optimized to efficiently read and write numeric values stored in this database.

In addition to generally efficient operation, Controller.PDbNum operates especially
quickly when reading and writing the "GPL program variable's" (DataID's 1850-1869).
These database elements have been created to allow GPL projects to interface to
custom web pages. Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

WARNING: While database values can be freely read, care should
be taken when writing to general database parameters.
Unintentionally altering some values may cause the system to not
operate properly.

Examples

Dim limit As Single
limit = Controller.PDbNum(16077,,,2) ' Sets limit equal to the maximum
 ' allowable range of travel for jt 2

See Also

Controller Class | Controller.PDb

20

Controller Class

Controller.PowerEnabled Property

Sends a request to either turn on or off high (motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerEnabled = <boolean_value>
-or-
Controller.PowerEnabled(timeout) = <boolean_value>
-or-
... Controller.PowerEnabled

Prerequisites

Enabling power via this software command is not permitted on Category 3 safe systems.
For Category 3 systems, a momentary contact, hardware “Enable Power” button must be
manually pressed.

Parameters

timeout

An optional numeric value that specifies the maximum time, in seconds,
to wait for power to come on. If less than or equal to zero or omitted, this
property waits forever.

Remarks

Setting the PowerEnabled property True sends a request to the control system to
enable high power to the amplifiers. For non-Category 3 safe systems, high power will be
enabled only if a number of safety conditions are satisfied (e.g. no Hard E-Stop signal is
asserted, no fatal system error exists, etc.). This property waits until the power actually
comes on, with a time limit determined by the timeout parameter. If this parameter is
positive and the power does not come on within the time limit, this property throws an
exception that indicates why power did not come on.

Setting the PowerEnabled property False turns off high power to the amplifiers, but the
property does not wait until power is actually off. Unlike the Hard E-Stop signal that
delays for a fixed period of time before disabling power, turning off PowerEnabled forces
all moving robots to completely decelerate to a stop and allows time for the brakes to be
set before power to the amplifiers is disabled. Therefore, setting PowerEnabled False
allows for a more orderly stopping of motion than does a Hard E-Stop but this operation
is consequently somewhat slower.

The PowerEnabled property is automatically set to False by the system if High Power is
disabled by any means and is automatically set to True if High Power is enabled.

Examples

Dim bState As Boolean

21

GPL Dictionary Pages

Controller.PowerEnabled = True ' Requests high power be enabled
Controller.PowerEnabled(5) = True ' Requests high power be enabled
 ' and waits for up to 5 seconds
bState = Controller.PowerEnabled ' bState will be set True if power is
 ' enabled, else will be set False.

See Also

Controller Class | Controller.PowerState | Controller.SoftEstop | Robot.RapidDecel

22

Controller Class

Controller.PowerState Property

Reads and returns an Integer value that indicates the current state of the amplifier high
power sequencing.

... Controller.PowerState(mode)

Prerequisites

None

Parameters

mode

An optional numeric expression that is 0 if only the power sequencing
state is to be returned or 1 if a combined power state, hard-stop indicator
and Automatic Execution Mode indicator is to be returned. By default,
this value is 0.

Remarks

In order to enable high power to the amplifiers, the system must transition in an orderly
fashion through several states to ensure that safety and hardware requirements are
satisfied. The PowerState property indicates the current state of the power sequencing.

If mode is 0, the possible values returned by this property and their interpretation are
presented in the following table (this is equivalent to "Power state" DataID 230):

PowerState Description (mode = 0)
0 System initially starting up
1 Power off, fatal error has occurred
2 Power off, power sequence restarting
3 Power being turned off, no fault condition has occurred
4 Power being turned off, a fault condition has occurred
5 Power is off, a fault has occurred that must be cleared

6 Power is off, waiting for hardware enable power switch to be turned
off

7 Power is off, waiting for enable power signal to be asserted
8 Power is coming up, enabling amplifiers
9 Power is on, performing motor commutation
10 Power is coming up, enabling servos and releasing brakes
11 Power is on, waiting to execute thread or Auto Execution task
12 Power is on, executing Auto Execution task

23

GPL Dictionary Pages

If mode is 1, the possible values returned by this property and their interpretation are
presented in the following table (this is equivalent to "Power/Auto execute state" DataID
234):

PowerState Description (mode = 1)
0 System initially starting up
1 Power off, fatal error has occurred
2 Power off, power sequence restarting
3 Power being turned off, no fault condition has occurred
4 Power being turned off, a fault condition has occurred
5 Power is off, a fault has occurred that must be cleared

6 Power is off, waiting for hardware enable power switch to be turned
off

7 Power is off, waiting for enable power signal to be asserted
8 Power is coming up, enabling amplifiers
9 Power is on, performing motor commutation
10 Power is coming up, enabling servos and releasing brakes
11 Power is on, waiting to execute thread or Auto Execution task
12 Power is on, executing Auto Execution task
15 Power is off, a Hard E-Stop is being asserted
20 Power is on, ready for a GPL project to execute and attach the robot
21 Power is on, a GPL project is executing and has attached the robot
22 Power is on, DIO MotionBlocks is executing
23 Power is on, Automatic Analog Input Velocity mode is executing
24 Power is on, Automatic Analog Input Torque mode is executing

25 Power is on, Automatic Master/slave mode is executing (not
implemented)

26 Power is on, CANopen via CAN net is executing (not implemented)
27 Power is on, CANopen via serial line is executing (not implemented)
28 Power is on, robots are being homed
29 Power is on, Virtual MCP Jog Mode has control of the robot
30 Power is on, External Trajectory mode is executing
31 Power is on, Hardware MCP Jog Mode has control of the robot

Examples

Dim state As Integer
state = Controller.PowerState ' Sets state to one of the values listed above

See Also

Controller Class | Controller.PowerEnabled | Controller.SoftEstop | Robot.RapidDecel

24

Controller Class

Controller.RecordButton Property

Reads and writes the latched Boolean value that indicates if the hardware MCP
RECORD button has been pressed.

Controller.RecordButton = <boolean_value>
-or-
... Controller.RecordButton

Prerequisites

None

Parameters

None

Remarks

Whenever the RECORD key on the Precise Hardware Manual Control Pendant (MCP) is
pressed, the value of this property is automatically set to True. This property value
remains True until it is manually set to False.

The RECORD key on the MCP and this property provide a convenient means for GPL
projects to receive a command from the operator to record key data, typically taught robot
locations.

The value of this property can also be accessed via the Parameter Database as the
"MCP Record button pressed" (DataID 632) value.

Examples

Dim As New Locationtaught_loc
If (Controller.RecordButton) Then
 Here ' Save current robot location taught_loc.
 Controller.RecordButton = False
End if

See Also

Controller Class

25

GPL Dictionary Pages

Controller.ShowDialog Method - Basic Modes

Displays a pop-up dialog box on the web interface Operator Control Panel (Basic
Modes).

Controller.ShowDialog(button_labels, message, button_index)
-or-
Controller.ShowDialog(button_labels, message, button_index, text_field)

Prerequisites

None

Parameters

button_labels

A required String expression containing the button labels to be
displayed. Up to 4 buttons can be specified, separated by commas. If the
button labels contain blanks or commas, they should be enclosed in
quotes. The string must not contain the vertical bar "|" character.

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. Set to 1 for the first button, 2 for the second,
etc.

text_field

(2nd form of this method) An optional ByRef String variable that
receives the value of any text entered into the dialog box text field. Its
initial value is shown as the default value of the text field. The string must
not contain the vertical bar "|" character.

Remarks

This method provides a simple way for a GPL procedure to communicate with the
operator without creating a custom web page. When ShowDialog is called, its operation
is as follows:

1. Waits if another thread is already displaying a dialog box.

26

Controller Class

2. Posts the dialog box for display and waits for the user to open
the Operator Control Panel on the web interface and click on a
button.

3. Un-displays the dialog box.
4. Returns the button index and optional text field information to the

user.

Since this method generates a dialog box within a browser, any special text formatting
must be defined as standard HTML specifications. In particular, to add a carriage return
and line feed, include "
" within the text. To have a section of text left justified,
precede it with "<p align=left>" and terminate it with "</p>". The total number of
characters available for defining the dialog box including all formatting is approximately
998 bytes.

This method is overloaded to support several dialog box styles. See "ShowDialog -
Advanced " for other forms of this method.

In the simplest (1st) form, the pop-up displays only the message text and labeled buttons.
When the user clicks on one of the buttons, the index of the button clicked is returned in
the button_index variable.

In the text_field (2nd) form, the pop-up also displays a single text field that can be
overwritten by the user. When the user clicks on one of the buttons, the current value of
the text field is returned in the text_field variable, and the index of the button clicked is
returned in the button_index variable.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Dim bi As Integer
Controller.ShowDialog("Okay", "Ready to begin process", bi)

27

GPL Dictionary Pages

ublic Sub Test1
 Dim bi As Integer

alog("Okay, Cancel", _
 "Enter part name", bi, reply)
 If bi = 1 Then
 … ' Okay selected
 Else
 … ' Cancel selected
 End If
 Console.WriteLine("You entered: " & reply)
End Sub

 P

 Dim reply As String
 reply = "Part_1" ' Default is Part_1
 Controller.ShowDi

28

Controller Class

See Also

Controller Class | Con vancedtroller.ShowDialog - Ad | Controller.ShowDialogMCP |
Controller.SystemMessage

29

GPL Dictionary Pages

Controller.ShowDi

Displays a pop-u nel (Advanced
Mode).

alog Method - Advanced Mode

p dialog box on the web interface Operator Control Pa

Controller.Sho ex, field_labels, wDialog(mode, button_labels, message, button_ind
field_values)

Prerequisites

None

Parameters

mode

A required numeric expression that specifies the display mode.

If mode = 1, displays a vertical list of data fields that can

buttons.

button_label

A requir r
"|" chara

the bottom of the dialog box. Up to 4 buttons can
be specified, separated by commas. If the button labels

field_lab

be filled in by the user.
If mode = 2, displays a vertical list of up to 12 labeled

s

ed String expression. The string must not contain the vertical ba
cter.

If mode = 1, defines the button labels that are displayed
along

contain blanks or commas, the labels should be
enclosed in quotes.
If mode = 2, this string is ignored and can be set to "".

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. Set to 1 for the first button, 2 for the second,
etc.

els

30

Controller Class

A
contains a separate label. Up to 12 elements are permitted. The strings
must not contain the vertical bar "|" .

If

 required 1-dimensional String array. Each String array element

ode = 1, the array elements define labels that are
displayed preceding each data field in the dialog box.

s.
If mode = 2, the array elements define labels for the
vertical list of buttons. The number of elements in this
array determines the number of displayed buttons.

, this array receives the values of any text
o the dialog box text fields. The initial values
y are displayed as the default values of the

Strings must not contain the vertical bar
cter.

, this array is ignored and may be empty.

Remark

 communicate with the operator
Dialog is called, its operation is as

1. Waits if another thread is already displaying a dialog box.
og box for display and waits for the user to open

face and click on a

the dialog box.
e button index and optional text field information to the

rates a dialog box within a browser, any special text formatting
 to add a carriage return
 of text left justified,

</p>". The total number of
s available for defining the dialog box including all formatting is approximately

8 bytes.

This method is overloaded to support several dialog box styles. See "ShowDialog -
Basic" for other forms of this method.

In this form, the dialog box allows different displays based on the mode parameter value.

If mode = 1, multiple fields may be entered and multiple values are
returned. When the user clicks on one of the buttons, the values of all the
fields are returned in the field_values array, and the index of the button
clicked is returned in the button_index variable.

m

The number of elements in this array determines the
number of displayed field

field_values

ional String array. A required 1-dimens

If mode = 1
entered int
of this arra
text fields. The
"|" chara
If mode = 2

s

This method provides a way for a GPL procedure to
without creating a custom web page. When Show
follows:

2. Posts the dial
the Operator Control Panel on the web inter
button.

ys 3. Un-displa
4. Returns th

user.

Since this method gene
must be defined as standard HTML specifications. In particular,
nd line feed, include "
" within the text. To have a sectiona

precede it with "<p align=left>" and terminate it with "
c
99
haracter

31

GPL Dictionary Pages

If mode = 2, a vertical array of buttons is displayed, with the field_labels
text values displayed next to each button. The index of the button clicked
is returned in the button_index variable. The field_values parameter is
not used.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Public Sub Test2
 Dim Buttons As String = "Okay, Cancel"
 Dim Text As String = "Enter the field values"
 Dim Label(2) As String
 Dim Field(2) As String
 Dim Index As Integer

 Label(0) = "X value"
 Label(1) = "Y value"
 Label(2) = "Z value"

 Field(0) = "100.0"
 Field(1) = "100.0"
 Field(2) = "0.0"

 Controller.ShowDialog(1, Buttons, Text, Index, Label, Field)

("Field 1: " & Field(1))
 ("Field 2: " & Field(2))
End Sub

 Console.WriteLine("Button: " & CStr(Index))
 Console.WriteLine("Field 0: " & Field(0))
 Console.WriteLine

Console.WriteLine

Public Sub Test3
 Dim Text As String = "Select operation to perform."

32

Controller Class

 Dim Label(2) As String
 Dim Nop() As String

wDialog(2, "", Text, Index, Label, Nop)

 Dim Index As Integer

 Label(0) = "Start"
 Label(1) = "Stop"
 Label(2) = "Exit"

 Controller.Sho

 Console.WriteLine("Button: " & CStr(Index))
End Sub

See Als

Controller Clas

o

s | Controller.ShowDialog - Basic | Controller.ShowDialogMCP |
emMessageController.Syst

33

GPL Dictionary Pages

Controller.Show

Displays a pop-u
Control Pen

DialogMCP Method

p dialog box on the LCD display of the Precise Hardware Manual
dant.

Controller.ShowDialogMCP(button_mask, message, button_return)
-or-
Controller.Sho wDialogMCP(button_mask, message, button_return, text_field)

Prerequisites

Precise Hardwa ontrol Pendant must be connected to the controller.

Parame

button_mask

A required Inte ion whose bits ey presses
that will terminate the dialog box. A value of -1 indicates that the
maximum number of keys are permitted to terminate the dialog process.

message

A required String ssion containing the be displayed on
the LCD display. t_field is specified, must include a
substring ('##...##') that defines where the c the text_field are
output in the MCP display. The number of p #) defines the
width of the input field.

button_return

g box text field. The initial value of this variable is
displayed as the default value of the text field. Given the key pad layout
of the Precise MCP, the text_field can only contain a numeric value that
consists of 0-9, ., + or - characters.

Remark

 procedure to communicate with the
trol Pendant. (Note: If you wish to

sticated interface, please refer to the /dev/mcp communication

re Manual C

ters

ger express specify the MCP k

 expre message to
 If a tex the message

haracters of
ound signs (

A required ByRef Integer variable that receives the bit flag that indicates
the button that was pressed to terminate the dialog operation.

text_field

An optional ByRef String variable that receives the value of any text
entered into the dialo

s

This method provides a simple way for a GPL
operator via the Precise Hardware Manual Con
develop a more sophi
device.)

34

Controller Class

When ShowDialogMCP is called, its operation is as follows:

aying a MCP dialog box.
 the contents of the

edded text_field, and lights the

ccepts presses of the 0-9, .,
+, - or DEL keys and presents the results in the LCD display.

4. If the display and keypad are switched back to their standard
mode due to a manual control operation or error message, blinks
the APP key LED until the APP key is pressed to re-display the

5. When one of the specified termination keys is pressed, un-
displays the dialog box.

6. Returns the termination key button bit flag and the optional text
field value.

The MCP keypad buttons that can be specified to terminate the dialog mode are listed in
the following table together with their associated button_mask and button_return values.

1. Waits if another thread is already displ
2. laces the standard MCP display with Rep

message and the optional emb
LED on the APP key.

3. If the optional text_field is defined, a

dialog.

Key Label button_mask&
button_return

Enter &H000001
Record &H000002

Yes &H000004
No &H000008
Quit &H000010
Prev &H000020
Next &H000040
F1 &H010000
F2 &H020000
F3 &H040000
F4 &H080000

By default, when a dialog is first displayed on the MCP, a beep is generated to alert the
operator. The beeping operation can be suppressed by resetting the "Beep MCP when
APP mode started" (DataID 636) system parameter.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Dim but As Integer
Dim ss, CRLF As String
CRLF = Chr(GPL_CR) & Chr(GPL_LF)
ss = " Ready to begin" & CRLF & CRLF _
 & " <Yes> or <No>"
Controller.ShowDialogMCP(&H4+&H8, ss, but)

Dim but As Integer
Dim reply, ss, CRLF As String
CRLF = Chr(GPL_CR) & Chr(GPL_LF)

35

GPL Dictionary Pages

ss = " Enter part number:" & CRLF _
 & " '#########'" & CRLF & CRLF _

 Default reply value
&H10, ss, but, reply)

If Then

le.WriteLine("You entered: " & reply)
End If

See Als

Controller Class

 & " <Enter> or <Quit>"
reply = "12" '
Controller.ShowDialogMCP(&H1+

 but = &H10
 Console.Writeline("Request cancelled")
Else
 Conso

o

 | Controller.ShowDialog | Controller.SystemMessage | /dev/mcp Device

36

Controller Class

Controller.SleepTick Method

Delays further execution of a thread for a specified number of Trajectory Generator
periods.

Controller.SleepTick(ticks)
-or-
Controller.SleepTick

Prerequisites

None

Parameters

ticks

An optional numeric expression that specifies an Integer number of

Remarks

er

the
 is specified in units of Trajectory Generator execution periods.

ase note that other programming languages like Basic typically have other means for
putting a thread to sleep for a specified period of time.

Exampl

 Controller.SleepTick ' Delays thread execution until
 ' after the start of the next
 ' trajectory cycle

 Controller.SleepTick (2/Controller.Tick) ' Delays thread execution for

See Also

Controller Class

Trajectory Generator periods that execution is to be delayed. If this
parameter is not specified, the value is defaulted to 1.

Often times, a program must poll input data values periodically. While it is possible to use
a “busy loop” that counts for a fixed number of times, this technique unnecessary
consumes CPU time that could be more productively spent by system drivers or oth
GPL threads. The SleepTick method allows a thread to relinquish control of the CPU for
a specified period of time and then resume execution at the next sequential statement.

Since many operations are synchronized to the operation of the Trajectory Generator,
delay time for this method

Ple

es

 ' approximately 2 seconds

 | Controller.Tick | Controller.Timer

37

GPL Dictionary Pages

Controller.SoftEStop Property

Reads and writes the Boolean value that triggers a Soft E-Stop condition when True.

Controller.SoftEStop = <boolean_value>
-or-
... Controller.SoftEStop

Prerequisites

None

Parameters

None

Remarks

Soft E-Stop initiates a rapid deceleration of all robots currently in motion and generates
an error condition for all GPL programs that are attached to a robot. This property can be

igh Power
enabled to the amplifiers and is therefore used for less severe error conditions. Leaving

er enabled is beneficial in that it prevents the robot axes from sagging and does not
re high power to be manually re-enabled before program execution and robot

otions are resumed. This function is also similar to a Rapid Deceleration feature except
ram error is generated.

ed by the system if High Power is
abled and re-enabled.

Dim bState As Boolean
Controller.SoftEStop = True ' Triggers a Soft E-Stop condition
bState = Controller.SoftEStop ' bState will be set True since a
 ' Soft E-Stop has been asserted

See Also

Controller Class

A

used to quickly halt all robot motions in a controlled fashion when an error is detected.

This function is similar to a Hard E-Stop except that Soft E-Stop leaves H

pow
requi
m
that a Rapid Deceleration only affects a single robot and no prog

If set, the SoftEStop property is automatically clear
dis

Examples

 | Controller.PowerEnabled | Controller.PowerState| Robot.RapidDecel

38

Controller Class

Controller.SystemMessage Method

e web
Operator Control Panel.
Enters a message into the GPL system message log that is displayed on th

Controller.SystemMessage(message)

Prerequisites

None

Parameters

message

A required String expression containing the message to be entered into
the message log.

Remark

e log is kept sorted in time order. This log is
displayed by the Operator Control Panel in the System Messages box.

Exampl

Controller.SystemMessage("Cycle time: " & CStr(now-saved))

See Als

ass

s

This method enters a line into the system message log with other system messages and
error message entries. The system messag

es

Controller.SystemMessage("Operation complete")

o

Controller Cl | Controller.ErrorLog | Controller.ShowDialog | Controller.ShowDialogMCP

39

GPL Dictionary Pages

Controller.SystemSpeed Property

Sets and gets the property that can reduce the speed of all robot motions.

Controller.SystemSpeed = <new_%_value>
-or-
... Controller.SystemSpeed

Prerequ

Parame

ne

Remark

ermit all motions to be executed slowly
and then gradually increased to full speed.

This value is specified as a percentage from 1 to 100 where 100 represents full speed as
defined in the motion program being executed. This parameter can also be modified via
the web Operator Control Panel as well as the "System wide test speed in %" (DataID

1).

ut into
ataID 602)

Examples

Controller.SystemSpeed = 50 ' All motions at half speed

See Also

Controller Class

isites

None

ters

No

s

The SystemSpeed property permits all position and velocity controlled motions for all
robots to be operated at a reduced speed without altering the path that each follows.
This property is provided as a debugging tool to p

60

When a new value is specified, the change in the motion speeds is gradually p
f change of test speed in %/sec" (Deffect based upon the setting of the "Rate o

to avoid excessive accelerations.

40

Controller Class

Controller.Tick Property

Double value that specifies the execution period for the Trajectory Generator in seconds.

...Controller.Tick

Prerequisites

None

Parameters

None

Remarks

The Trajectory Generator is the task that evaluates robot motion plans and generates the
series of individual commands to move each joint of each robot along its designated
To accomplish this task, the Trajectory Generator executes at a configurable repeti
rate. The Tick property returns

 path.
tion

 the period of the repetition rate in seconds. Typically this
will be set to a value of 0.002 or 0.004 seconds.

Examples

Dim period As Double
riod = Controller.Tick ' Sets period equal to the Trajectory
 ' Generator execution period, e.g. 0.004

 ' seconds

See Also

Controller Class

pe

 | Controller.SleepTick | Controller.Timer

41

GPL Dictionary Pages

Controller.Timer Property

f the controller’s usec clock, in units of seconds, as a Double. Returns the current value o

...Controller.Timer

Prerequi

Parame

Remark

This me value in
units of is clock value starts counting from January 1, 1988. Given the
number of significant bits in a Double, the Timer value will not lose accuracy until

proximately the year 2124.

Exampl

ElapsedTime = Controller.Timer-StartTime ' Value will be approx 2

Contro

sites

None

ters

None

s

thod reads the current value of the controller’s usec clock and returns the
seconds. Th

ap

es

Dim StartTime, ElapsedTime As Double
StartTime = Controller.Timer ' Reads system clock
Controller.SleepTick(2/Controller.Tick) ' Sleep for about 2 seconds

See Also

ller Class | Controller.SleepTick | Controller.Tick

42

Controller Class

Controller.Unload Method

Unloads the files and data associated with a GPL project from memory.

Controller.Unload(project_name)

Prerequi

Parame

project_name

t contains the name of the project to be
unloaded.

Remarks

ethod unloads a p roller's
memory and removing al memory area.

hod throws an e ecuting.
tions are thrown is not currently loaded or does not exist.

Examp

Dim th As Thread
sh
",

th.Start()
th.Join(0) ' Wait for thread to complete

See Als

Controller Class

sites

No procedures in this project can be currently executing.

ters

A required string expression tha

This m roject by removing all of its associated data from the cont
l associated files from the GPL project

This met
No excep

xception if any procedure in this project is currently ex
 if the project

les

Controller.Load("/fla
th = New Thread("Main

/projects/Test")
 "Test", "Thread2")

Controller.Unload("Test")

o

 | Co oadntroller.L | Thread.Join

43

Excep
Exception Handling Summary

e detail in o d
s of the Ex nts

provide a structured means for a procedure to d
us c

exception occurs, information on the cause of the exception can be automatically saved
in an Exception Object and execution can be branched to a block of code designed to
service the exception.

Exception Objects have two basic forms: a general Exception and a robot Exception.
Both forms store a numerical code that indicates the type of exception. In addition, the
robot Exception includes the number of the robot and the axes that are associated with
the exception. The general form of the Exception includes a Qualifier value that can
provide addition information on the nature of the exception.

The table below briefly summarizes the exception handling statements that are described
in greater detail in the following pages.

tion Handling

The following pages provid
the properties and method

formation
ception C

n the exception handling instructions an
lass. The exception handling stateme
etect and respond to program execution
edure to halt execution. When an exceptions that would otherwise ca e the pro

Statement Description

Catch
Used within a Try...Catch...Finally...End Try series of
statements to mark the start of the block of instructions
executed when an exception occurs.

End Try Marks the end of the exception handling structure.

Exit Try Terminates the execution of a Try or Catch block of
instructions.

Finally
Used within a Try...Catch...Finally...End Try series of
statements to mark the start of the block of instructions that is
always executed at the completion of the Try or Catch blocks.

Throw Generates a program execution exception.

Try...Catch...Finally...
Exception handling structure that captures execution exceptions
within a block of instructions and executes statements to field
the exception if necessary.

The table below briefly summarizes the properties and methods of the Exception Class
that are described in greater detail in the following pages.

Member Type Description

exception_obj.Axis Property
Sets and gets a bit mask indicating the
robot axes associated with a robot
Exception.

exception_obj.Clone Method Method that returns a copy of the
exception_obj.

exception_obj.ErrorCode Property Sets and gets the number of the error
message.

exception_obj.Message Method
Returns the full text string that is
generated based upon the exception_obj
properties.

44

Exception Handling

exception_obj.Qualifier Property Sets and gets the error message qualifier
for a general Exception.

exception_obj.RobotError Property
Sets and gets the Boolean that indicates
if an Exception is a robot or general
type.

exception_obj.RobotNum Property Sets and gets the number of the robot
associated with a robot Exception.

exception_obj.UpdateErrorCode Method
eneral (vague) Exception

error code with a more specific error
code.

Updates a g

45

GPL Dictionary Pages

Catch Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
structions executed when an exception occurs. block of in

Catch exception_object

Prerequ

ust always follow a Try statement block. Either a Catch or Finally statement or one of
each must appear in a Try structure.

Parame

ception_object

t must already have a
data section allocated prior to the execution of this instruction, i.e. the
New qualifier should have been previously used in a Dim statement to
instantiate the Object.

Remarks

The Catch statement marks the start of the block of instructions that is executed if an
exception occurs during the execution of the corresponding Try block of instructions. If
the Catch block is triggered, the information on the execution exception is automatically
stored into the exception_object.

If an exception occurs during the execution of the Catch block of statements, thread
execution will be terminated unless the violating instructions are themselves contained
within a Try structure or if a higher-level Try structure exists.

At the completion of the Catch block, the statements in the following Finally block are
executed if they exist, otherwise execution continues at the first step following the
associated End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling

isites

M

ters

ex

Required Exception Object. The exception_objec

 | Try...Catch...Finally...End Try Statements

46

Exception Handling

End Try Statement

This statement marks the end of the exception handling structure.

End Try

Prerequisites

Must always follow a Catch or Finally statement block.

Remarks

Please see the documentation on the Try...Catch...Finally...End Try Statements for

See Als

Except

further information on the use of this statement.

o

ion Handling | Try...Catch...Finally...End Try Statements

47

GPL Dictionary Pages

Exit Try Statement

This statement terminates the execution of either a Try or a Catch block of instructions.

Exit Try

Prerequisites

Can only be specified within a Try or Catch block of instructions. In particular, this

Remarks

If this statement is executed within a Try or a Catch block of instructions, statement

for
on the general format of the exception handling structure.

See Als

 Handling

instruction is illegal within a Finally block.

execution immediately branches to the first statement in the Finally block or, if the
Finally block is not defined, the first statement following the subsequent End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements
information

o

Exception | Try...Catch...Finally...End Try Statements

48

Exception Handling

Finally Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
block of instructions that is always executed at the completion of the Try or Catch blocks.

Finally

Prerequisites

Must always follow a Try or Catch statement block. Either a Catch or Finally statement
e of each must appear in a Try structure.

Remark

The Fin ays executed
after the ents or at the completion of the
Catch serie ram to specify a series of statements that

e guaranteed to be executed before execution continues following the End Try
tement.

See Als

Except

or on

s

ally statement marks the start of the block of instructions that is alw
 successful execution of a Try series of statem

s of statements. This allows a prog
ar
sta

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

o

ion Handling | Try...Catch...Finally...End Try Statements

49

GPL Dictionary Pages

Throw Statement

Generates a program execution exception.

Throw exception_object

Prerequisites

None

Parameters

exception_object

Required Exception Object. The Exception can contain either a
general or a robot formatted error.

Remarks

This statement can be included in any procedure and need not be contained within a
Try...Catch...Finally...End Try structure. Whenever it is executed, a program exception
is immediately signaled. If this statement is not executed within a Try block, execution of
the thread is terminated and the error contained within the exception_object is reported to
the operator.

The Throw statement is often used within a Catch block. If the Exception captured by
the Catch is not to be processed by the Catch block, the Exception can be reissued by
a Throw statement. This allows Exceptions that are not to be serviced by a Catch to be
passed to a higher-level Catch or to halt thread execution.

To allow application programs to generate their own special Exceptions, two error codes
exist that are never automatically generated by the controller:

(-786) *Project generated error*
(-1038) *Project generated robot error*

These error codes can be emitted by the Throw instruction to alert the operator to special
exception conditions not normally detected by GPL.

If the ErrorCode property of the Exception Object parameter is not a negative value,
the error -807 "Invalid exception" is thrown. If you have just created the object, the value
of ErrorCode is zero by default, so you must explicitly set it to avoid this error.

Examples

 Dim exc1 As New Exception
 Try
retry:
 Move.Loc(loc1, profile1)

50

Exception Handling

 Move.WaitForEOM
 Catch exc1

s, reduce speed

End If

See Also

Excepti

 If (exc1.ErrorCode = -153) Then ' Soft envelope error?
 profile1.Speed *= .9 ' Ye
 GoTo retry

 Throw exc1 ' Emit unknown error
 End Try

on Handling

51

GPL Dictionary Pages

Try..Catch..Finally..End Try Statements

Exception handling structure that captures execution exceptions within a block of
instructions and, if necessary, executes statements to field the exception.

Try
 [try_statements]
[Catch exception_object
 [catch_statements]]
[Finally
 [finally_statements]]
End Try

Prerequi

ith

Parame

n_object

catch_statements

Optional statement or list of statements that are always executed at the
successful completion of the try_statements or the completion of the

h_statements.

Remark

sites

If "Break on exception code" (DataID 307) is set or if an application is started in GDE w
"Break on exception" enabled, any active Try...Catch structures are ignored. These
features are provided as debugging and diagnostic aids.

ters

try_statements

Optional statement or list of statements whose exceptions, if any, will be
handled by another block of code rather than immediately resulting in the
termination of thread execution.

exceptio

Exception Object, required if the Catch statement is defined. When an
exception occurs during the execution of the try_statements, the
exception description is automatically stored in the exception_object prior
to the execution of the catch_statements. The exception_object must
already have a data section allocated prior to the execution of the Catch,
i.e. the New qualifier should have been previously used in a Dim
statement to instantiate the Object.

Optional statement or list of statements that are executed if an exception
occurs during the execution of the try_statements.

finally_statements

catc

s

52

Exception Handling

If an exception of any type occurs when the try_statements are executed, rather than
res the exception
rt of the

object to determine the
n and then perform whatever corrective action is necessary. If the

ents complete execution without an error or when the catch_statements
after an exception, the finally_statements are always executed to

anup. At the completion of the finally_statements, regular
.

ain either a single Catch statement or a single Finally
atement or one of each type of statement. If a Catch statement is specified, it must

e an exception_object.

in each other to an arbitrary depth. For example, a Try
 the catch_statements of another, higher-level Try

calls can be contained within any of the statement blocks

Try structure with a
e execution of the procedure is immediately terminated and execution will

nstruction in the catch_statements in the calling procedure. This
ry Catch to be placed at a very high-level and capture any

elow.

y structure with a
 the exception.

thout a Catch but
uted first, then

ed procedure will be terminated, after which execution will continue in
e catch_statements of the calling procedure. This case is illustrated in Example #2

e use of GoTo instructions in connection with Try
ed in the catch_statements can branch execution into the

. Also, GoTo's can be contained in the try_statements,
 so long as the branch is to an instruction

 All other branching into and out of the Try
ain code is not permitted, e.g. you cannot branch from

 out of the try_statements into the
xample #3 below.

urely terminating a series of
hen this instruction is executed in either the

continues at the first
rmitted in the

Examples

Public Sub MAIN
 Dim exc1 As New Exception

halting execution and reporting the error, the system automatically sto
e exception_object and branches execution to the stainformation in th

catch_statements. The catch_statements can test the exception_
nature o
try_statem

f the exceptio

complete execution
perform any required cle
instr ntinues at the first statement following the Tryuction execution co End

A Try structure must cont
st
always includ

Try structures can be nested with
 can be contained withinstructure

structure. Also, procedure
statements. including the try_

If an exception occurs within a procedure that is invoked within a
Catch, th
continue at the first i
feature allows a single T
exceptions in any lower level routines. This case is illustrated in Example #1 b

Alternately, if the called pro
atch_statements within the called routine will service

cedure generates an exception within a Tr
Catch, the c
However, if an exception occurs in a called procedure within a Try wi

ally, the finally_statements in the called routine will be execwith a Fin
ecution of the callex

th
below.

There are special limitation
n
s on th

structures. A GoTo contai
nding try_statementscorrespo

catch_statements, and the finally_statements
atements.within the same block of st

 and the mstatement blocks
outside of a Try structure into the try_statements or
finally_statements. These special limitations are illustrated in E

Lastly, an Exit Tr statement is provided for prematy
ch_statements. Wtry_statements or cat

try_statements or the catch_statements, execution branches and
finally_statements. Exit Try instructions are not pestatement in the

final ments. ly_state

Example #1

53

GPL Dictionary Pages

 Try
 test()

ption!") ' Is executed
End Try

Public Sub test()

' Generates exception

 exc1
Try
 test()

 Console.WriteLine("Test completed") ' Never gets here
tch exc1
 Console.WriteLine("Exception!") ' Is executed

 End Try
d Sub

Public Sub test()

 Console.WriteLine("Test done") ' Never gets here

mple #3

Dim exc1 As New Exception

 exc1
 Controller.SystemMessage(exc1.Message)
 Controller.ShowDialog("Ok,Cancel","Retry?",index)

 If index = 1 Then

 Robot.Attached = 1
 End If
 GoTo retry ' LEGAL BRANCH
 End If
 GoTo bad_jump ' ILLEGAL BRANCH!!!
 End Try
bad_jump:

See Also

Exception Handling

 Console.WriteLine("Test completed") ' Never gets here
 Catch exc1
 Console.WriteLine("Exce

End Sub

 Dim ii As Integer
 ii = 1 / 0
 Console.WriteLine("Inside Test") ' Never gets here
End Sub

Example #2

Public Sub MAIN

Dim As New Exception

 Ca

En

 Dim ii As Integer
 Try
 ii = 1 / 0 ' Generates exception
 Console.WriteLine("Inside Test") ' Never gets here
 Finally
 Console.WriteLine("Finally in Test") ' Is executed
 End Try

End Sub

Exa

 Dim index As Integer
 Robot.Attached = 1
 Try
retry:

Move.Loc loc1, 1) (profile
 Move.WaitForEOM

Catch

 If Robot.Attached = 0 Then
 Controller.PowerEnabled = True

 | Exit Try Statement | Throw Statement

54

Exception Handling

exception_object.Axis Property

 the robot axes associated with a robot Exception. Sets and gets a bit mask indicating

exception_object.Axis = <new_bitmask_value>
-or-
...exception_object.Axis

Prerequisites

Only valid for robot Exceptions.

 motors that are
associated with the error condition. This value is a bit mask where the least significant bit
(&H1) re is or motor. Up to 12 bits can be set and multiple bits can be
set at th ample, when the error code is -1012 (Joint out-of-range), the

en

Exampl

Dim exc1 As New Exception ' Create new general exception

1.RobotError = True ' Indicate its a robot error
Code = -1012 ' *Joint out-of-range*

Axis = &HA ' Specify axes 2 and 4

See Als

Except

Parameters

None

Remarks

For robot Exceptions, the Axis property specifies the robot axes or

presents the first ax
e same time. For ex

Axis property bits indicate the which axes have violated their software ranges of motion.

When a New Exception is created, it defaults to a general Exception not a robot. Wh
an Exception is set to a robot type, the Axis bits are initially all set to 0.

es

exc
exc1.Error
exc1.
Console.WriteLine(exc1.Message) ' *Joint out-of-range* Robot 1: 2 4

o

ion Handling | exception_object.RobotError | exception_object.RobotNum

55

GPL Dictionary Pages

excep

bject.

tion_object.Clone Method

Method that returns a copy of the exception_o

...exception_object.Clone

Prerequisites

None

Parameters

None

Remarks

For objects, if a program contains a simple assignment statement:

object_1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent change of

Exampl

 exc1 As New Exception ' Create new exception with data
 exc2 As Exception ' Create new exception with no data

exc1.ErrorCode = -1002 ' *Invalid axis* error code
c1.RobotError = True

a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object_1 = object_2.Clone

es

Dim
Dim

ex
exc2 = exc1.Clone ' Makes a copy of exc1 data
exc2.Axis = &HC ' Does not affect exc1 data

 Console.WriteLine(exc1.Message) ' *Invalid axis* Robot 1
Console.WriteLine(exc2.Message) ' *Invalid axis* Robot 1: 3 4

See Also

Exception Handling

56

Exception Handling

exception_object.ErrorCode Property

Sets and gets the number of the error message.

exception_object.ErrorCode = <new_value>
-or-
...exception_object.ErrorCode

Prerequ

Parame

ne

Remark

at is represented by the exception_object. This value can range from 4095
to -4095 and each utilized value has a text string associated with it for display purposes.

ost cases, the ErrorCode is further qualified by additional information such as a
mber, axis number or other information.

cate success or
 type. A value of 0 is

For a full listing of the defined ErrorCode values, please see the "System Error Codes"
ction of the Precise Documentation Library.

xception is created, it defaults to a general Exception with an ErrorCode
value of 0 (success).

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.ErrorCode = -786 ' *Project generated error*
exc1.Qualifier = 8 ' Specify the qualifier
Console.WriteLine(exc1.Message) ' *Project generated error*: 8

See Also

Exception Handling

isites

None

ters

No

s

The ErrorCode property of an Exception is the primary value that indicates the type of
exception th

In m
robot nu

To facilitate the interpretation of the ErrorCodes, positive values indi
warning conditions and negative numbers indicate an error of some
the general success code.

se

When a New E

57

GPL Dictionary Pages

exception_object.Message Method

Returns the full text string that is generated based upon the exception_obj properties.

...exception_object.Message

Prerequi

Parame

Remark

ven any exception_object, this method interprets the ErrorCode and any defined
refinement information such as the RobotNum, Axis, or Qualifier properties as

Exampl

 ' Specify axes 2 and 4
Console.WriteLine(exc1.Message) ' *Joint out-of-range* Robot 1: 2 4

See Also

Excepti

sites

None

ters

None

s

Gi

appropriate and returns the equivalent text string that is normally output to indicate this
exception.

es

Dim exc1 As New Exception ' Create new general exception
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1012 ' *Joint out-of-range*
exc1.Axis = &HA

on Handling

58

Exception Handling

exception_object.Qualifier Property

Sets and gets the error message qualifier for a general Exception.

exception_object.Qualifier = <new_value>
-or-
...exception_object.Qualifier

Prerequisites

Only valid for general Exceptions. Not valid for robot Exceptions.

-

ject generated error), the Qualifier property can be used by the
GPL Project to convey which of several different special error conditions was detected.

er

lue is reset to 0.

Exampl

Dim exc1 As New Exception ' Create new general exception
1.ErrorCode = -786 ' *Project generated error*
1.Qualifier = 8 ' Specify the qualifier

Console.WriteLine(exc1.Message) ' *Project generated error*: 8

See Als

Except

Parameters

None

Remarks

For general Exceptions, the Qualifier property specifies an additional number that can
be used to further refine the meaning of an error condition. This value is stored as a 16
bit unsigned number and can therefore range from 0 to 65535. For example, when the
error code is -786 (Pro

When a New Exception is created, it defaults to a general Exception with a Qualifi
property of 0. When an Exception is changed from a robot to a general type, the
Qualifier va

es

exc
exc

o

ion Handling | exception_object.RobotError

59

GPL Dictionary Pages

exception_object.RobotError Property

Sets and gets the Boolean that indicates if an Exception is a robot or general type.

exception_object.RobotError = <boolean_value>
-or-
...exception_object.RobotError

Prerequisites

None

Parameters

None

Remarks

Setting the RobotError property of an exception_object to True indicates that it is
Exception and therefore has a RobotNum and an Axis property. Otherwise, setting
RobotError to False indicates that the exception_object is a general Exception and has
a Qualifier property.

a robot

Both robot and general Exceptions have the same effect in terms of halting thread

ion of the
error code.

When a New Exception is created, it defaults to a general Exception. To switch
een ro n types, the RobotError property should be set as

Exampl

m exc1 As New Exception ' Create new general exception
exc1.RobotError = True ' Indicate its a robot error

Console.WriteLine(exc1.Message) ' *Robot already attached* Robot 3

See Also

Exception Handling

execution and disabling robot power. The only difference between the two types of
Exceptions is which additional properties exist to further refine the interpretat

betw bot and general Exceptio
needed.

es

Di

exc1.ErrorCode = -1006 ' *Robot already attached*
exc1.RobotNum = 3 ' Specify the robot

60

Exception Handling

exception_object.RobotNum Property

Sets and gets the number of the robot associated with a robot Exception.

exception_object.RobotNum = <new_value>
-or-
...exception_object.RobotNum

Prerequisites

Only valid for robot Exceptions.

Parameters

None

Remarks

 it is a conveyor belt and values from 1 to 16 specify regular robot numbers.
For example, when the error code is -1006 (Robot already attached), the RobotNum
pro eing accessed when this error was generated.

Wh a faults to a general Exception not a robot. When
an Exception is set to a robot type, the RobotNum value is initially set to 1.

Exampl

See Als

Exceptio

For robot Exceptions, the RobotNum property specifies the number of the robot
associated with the error condition. This value can range from 0 to 16. A value of 0
indicates that

perty indicates which robot was b

en New Exception is created, it de

es

Dim exc1 As New Exception ' Create new general exception
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1006 ' *Robot already attached*
exc1.RobotNum = 3 ' Specify the robot
Console.WriteLine(exc1.Message) ' *Robot already attached* Robot 3

o

n Handling | exception_object.RobotError | exception_object.Axis

61

GPL Dictionary Pages

exception_object.UpdateErrorCode Method

n error code with a more specific error code.
Replaces error codes -1029, -1030, or -1043, if possible.
Updates a general (vague) Exceptio

...exception_object.UpdateErrorCode

Prerequisites

None

Parameters

None

Remarks

Because GPL responds as quickly as possible to error conditions and contains many
independent threads, when an exception is thrown, a user thread may not immediately
know the exact reason for the exception. In this case, GPL reports one of three generic
error codes:

• -1029: Asynchronous error
• -1030: Fatal asynchronous error
• -1043: Asynchronous soft error

Several milliseconds later, the specific error code is normally available, but the system
does not wait for this information before initiating a reaction, such as decelerating the
robot.

The UpdateErrorCode method checks an Exception object’s error code to see if it
matches one of the generic error code values listed above. If so, by analyzing error
message timestamps, it replaces the generic error code with any more specific error code
that has become available.

This is a convenience method that eliminates the need to develop software to utilize the
Controller.ErrorLog property to scan posted errors for more specific error information.

Examples

Dim exc As Exception
Dim my_loc As Location
Dim my_prof As Profile
Try
 Move.Loc(my_loc, my_prof)
Catch exc
 ' Perform time-critical exception handling here
 Console.WriteLine(exc.ErrorCode) ' Show initial error
 Thread.Sleep(10) ' Wait for errors to propagate
 exc.UpdateErrorCode
 Console.WriteLine(exc.ErrorCode) ' Show final error

62

Exception Handling

End Try

See Also

Exception Handling | Controller.ErrorLog

63

File and Serial I/O Classes
File and Serial I/O Classes Summary

The following pages provide detailed informa e properties and methods for the
lement nd s.

The File Class is designed specifically for m
am las

communications.

The tables below briefly summarize the properties and methods for each Class, which
are described in greater detail in the following sections.

tion on th
various classes that imp both file a serial port input and output communication

anaging disk files and disk file directories.
ses apply to both file and serial The StreamReader and Stre Writer C

File Class Member Type Description

File.CreateDirectory Shared
Method

Creates a file directory and the path to the
directory.

File.DeleteDirectory Shared
Method Deletes a single, empty file directory.

File.DeleteFile Shared
Method Deletes a single file.

File.GetDirectories Shared
Method

Returns an array of strings containing the
names of directories in a directory.

File.GetFiles Shared
Method

Returns an array of strings containing the
names of files in a directory.

StreamReader Member Type Description

New StreamReader Constructor
Method Opens a file or serial port device for reading.

streamreader_obj.Close Method Closes the file or device associated with a
StreamReader Object.

streamreader_obj.Peek Method Returns the next byte from an input stream
without removing it from the stream.

streamreader_obj.Read Method Returns the next byte from an input stream
and removes it from the stream.

streamreader_obj.ReadLine Method Reads a line from the input stream
terminated by LF, CR, or CR-LF.

StreamWriter Member Type Description

New StreamWriter Constructor
Method Opens a file or serial port device for writing.

streamwriter_obj.AutoFlush Property Sets or gets the property that controls
whether or not output is buffered.

streamwriter_obj.Close Method Closes the file or device associated with a

64

File and Serial I/O Classes

StreamWriter Object.

streamwriter_obj.Flush Method Immediately writes any buffered data for a
StreamWriter Object.

Property
Sets or gets the property that controls how
lines are terminated by the WriteLine

streamwriter_obj.NewLine

method.

streamwriter_obj.Write Method ber or a String to an output
device or file.
Writes a num

streamwriter_obj.WriteLine Method
Writes a number or a String to an output
device or file, followed by the NewLine line
terminator.

65

GPL Dictionary Pages

File.CreateDirectory Method

Creates a file directory and the path to the directory.

File.CreateDirectory (path)

Prerequisites

Directories can only be created on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters

path

eginning with
the device name and ending with the new directory name.

Remarks

any
undefined, they are automatically created.

es "temp" if
needed

See Also

File and Serial I/O

A String that contains the path for the directory to create, b

This method creates a directory in the location specified by the path parameter. If
intermediate directories in the path are

An error occurs if the final directory already exists.

If any error occurs, this method throws an Exception.

Examples

File.CreateDirectory ew_directory" ("/ROMDISK/temp/new_directory") ' Create "n
 ' Also creat

 | File.DeleteDirectory

66

File and Serial I/O Classes

File.DeleteDirectory Method

ty file directory. Deletes a single, emp

File.DeleteDirectory (path)

Prerequisites

The directory must be empty.

Parameters

path

A String that contains the path for the directory to delete, beginning wit
the device name and ending with the new dir

h
ectory name.

eter,
provided that the directory is empty. If any files or sub-directories exist within the

ny error occurs, this method throws an Exception.

Examples

le.DeleteDirectory("/ROMDISK/temp/new_directory") ' Delete "new_directory"

File and Serial I/O

Remarks

This method deletes a single directory in the location specified by the path param

directory, an error occurs.

An error also occurs if the final directory does not exist.

If a

Fi
 ' if empty

See Also

 | File.CreateDirectory | File.DeleteFile

67

GPL Dictionary Pages

File.DeleteFile Method

Deletes a single file.

File.DeleteFile (path)

Prerequisites

The file cannot be open for read or write.

Parameters

path

A String that contains the path to the file to delete, beginning with the

Remarks

This method deletes a single file in the location specified by the path parameter.

Exampl

File and Serial I/O

device name and ending with the file name.

An error occurs if the file does not exist.

If any error occurs, this method throws an Exception.

es

File.DeleteFile("/ROMDISK/myfile.txt") ' Delete "myfile.txt"

See Also

 | File.DeleteDirectory

68

File and Serial I/O Classes

File.GetDirectories Method

Reads a directory, gets the names of all sub-directories, and returns them in an array of
Strings.

<string_array> = File.GetDirectories (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters

path

A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.

Remarks

This method permits a GPL program to retrieve the names of sub-directories within a
directory. If the specified directory path does not exist, this method throws an exception.

ng

relative to the specified path.

ethod is invoked,
some existing sub-directories may be missed or a blank String element may be returned.

Examples

le.Writeline("File " & CStr(ii) & ": " & files(ii-1))
Next ii

See Also

File and Serial I/O

One sub-directory name is returned per array element. The length of the returned Stri
array indicates how many sub-directories were discovered. The sub-directory names are

If sub-directories are being actively created or deleted when this m

Dim files() As String
Dim ii As Integer

(path) files = File.GetDirectories
Console.Writeline(CStr(files.Length) & " directories seen")

 1 To files.Length For ii =
 Conso

 | File.GetFiles

69

GPL Dictionary Pages

File.GetFiles Method

Reads a directory, gets the names of all non-directory files, and returns them in an array
of Strings.

<string_array> = File.GetFiles (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters

path

Remarks

od permits a GPL program to retrieve the names of files within a directory. If the
ecified directory path does not exist, this method throws an exception.

indicates how many files were detected. The file names are relative to the specified path.

If files are being actively created or deleted when this method is invoked, some existing
s may be missed or a blank String element may be returned.

Exampl

 ii As Integer
les = File.GetFiles(path)

Console.Writeline(CStr(files.Length) & " files seen")

 CStr(ii) & ": " & files(ii-1))
Next ii

See Also

File and Serial I/O

A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.

This meth
sp

One file name is returned per array element. The length of the returned String array

file

es

Dim files() As String
Dim
fi

For ii = 1 To files.Length
 Console.Writeline("File " &

 | File.GetDirectories

70

File and Serial I/O Classes

New StreamReader Constructor

er Object. Also opens a file or device for reading. Constructor for creating a StreamRead

New StreamReader (path)

Prerequi

Parame

A String that contains the path for the file or device to open. Local serial
ports are devices named "/dev/com1", "/dev/com2", etc. Remote serial
ports are named "/dev/comrxy" where "x" is the number of the remote
device and "y" is the number of the serial port on the remote device.

Remarks

od opens a file or device and associates it with a new StreamReader Object.

ctor throws an Exception.

Dim com1 As New StreamReader("/dev/com1") ' Open serial port #1
Dim tfile As New StreamReader("/ROMDISK/test.tmp") ' Open temporary file
Dim pfile As New StreamReader("/flash/save.txt") ' Open permanent file

See Also

File and Serial I/O

sites

None

ters

path

Temporary files may be placed on device "/ROMDISK" and permanent
files may be placed on "/flash".

This meth

If any error occurs, this constru

Examples

 | New StreamWriter

71

GPL Dictionary Pages

stream

iated with a StreamReader Object.

reader_object.Close Method

Closes the file or device assoc

steamreader_object.Close

Prerequ

None

Parameters

None

Remarks

any I/O error occurs, it throws an Exception. No error occurs if the file or device is not

Exampl

File and Serial I/O

isites

This method closes the file or device that is associated with a StreamReader Object. If

currently open.

es

streamreader_object.Close()

See Also

 | New StreamReader

72

File and Serial I/O Classes

streamreader_object.Peek Method

Returns the next byte from an input stream without removing it from the stream.

...steamreader_object.Peek()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters

None

Remarks

This method returns the next byte from the input stream as an Integer, but it does n
remove the byte from the stream. The next input method call will sti

ot
ll return this byte.

1 if no bytes are
available to read.

Examples

 com1 As New StreamReader("/dev/com1")
 c As Integer

c = com1.Peek()

See Als

File and Serial I/O

If any I/O error occurs or an end-of-file is encountered, this method returns -1.

For serial devices, this method does not block, but immediately returns -

If no device or file is open, this method throws an Exception.

Dim
Dim

o

 | streamreader_object.Read

73

GPL Dictionary Pages

streamreader_object.Read Method

Returns the next byte from an input stream and removes it from the stream.

...steamreader_object.Read()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters

None

Remarks

This method returns the next byte from the input stream as an integer. The byte is
removed from the stream so that subsequent calls do not return it.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.

ead.

he byte is lost due to an error, this method will
continue blocking and hang your procedure.

Examples

 com1 As New StreamReader("/dev/com1")
 c As Integer

Read()

See Als

For serial devices, this method blocks if no bytes are available to r

Be careful when using this method to read data from a serial port since it blocks until a
byte is available. If for some reason t

If no device or file is open, this method throws an Exception.

Dim
Dim
c = com1.

o

File and Serial I/O | streamreader_object.Peek | streamreader_object.ReadLine

74

File and Serial I/O Classes

streamreader_object.ReadLine Method

Reads a line from the input stream terminated by LF, CR, or CR-LF.

...steamreader_object.ReadLine()

Prerequi

put stream must have been opened using a New to create the
streamreader_object.

Parameters

None

Remarks

This me he next
LF char
blocks u is
seen.

r is removed from the end of the string.

Note that the
ReadLi

Be care locks until a
ator is seen. If for some reason the line terminator is lost or corrupted due to

 error, this method will continue blocking and hang your procedure.

Exampl

Dim file As New StreamReader("/flash/data.txt")
 line As String
e = file.ReadLine()

See Als

File and

sites

The in

thod returns a String containing the next bytes in the input stream up to t
acter (decimal value 10, GPL_LF) or CR character (decimal 13, GPL_CR). It
ntil the data followed by these line terminators is received or the end-of-file

Any LF, CR, or CR-LF pai

StreamWriter NewLine property does not have any effect on how
ne interprets the end of line.

ful when using this method to read data from a serial port since it b
line termin
an

If some other I/O error occurs, this method throws an Exception.

es

Dim
lin

o

 Serial I/O | streamreader_object.Read

75

GPL Dictionary Pages

New StreamWriter Constructor

Constructor for creating a StreamWriter Object. Also opens a file or device for writing.

New StreamWriter (path)
-or-
New StreamWriter (path, append)

Prerequisites

None

Parameters

path

A String that contains the path for the file or device to open. Serial ports
are devices named "/dev/com1", "/dev/com2", etc. Remote serial ports

ld be
appe append , a new file is
always created, overwriting any existing file with the same name.

Remark

r device and associates it with a new StreamWriter Object.

 default, AutoFlush is enabled for serial ports but not for files.

n Exception.

Examples

Dim com1 As New StreamWriter("/dev/com1") ' Open serial port #1
Dim tfile As New StreamWriter("/ROMDISK/test.tmp") ' Open temporary file
Dim pfile As New StreamWriter("/flash/save.txt") ' Open permanent file

See Also

File and Serial I/O

are named "/dev/comrxy" where "x" is the number of the remote device
and "y" is the number of the serial port on the remote device. Temporary
files may be placed on device "/ROMDISK" and permanent files may be
placed on "/flash".

append

A Boolean value that determines whether or not new data shou
nded to the end of an existing file. If is False

s

This method opens a file o

By

If any error occurs, this method throws a

 | New StreamReader | streamwriter_object.AutoFlush

76

File and Serial I/O Classes

streamwriter_object.AutoFlush Property

utput is buffered. Sets or gets the AutoFlush property that controls whether or not o

steamwriter_object.AutoFlush = <boolean_value>
-or-
...steamwriter_object.AutoFlush

Prerequ

Parame

ne

Remark

Setting this property to True causes output requests to immediately write data to the file
 write

y significantly slow down any write operations.

By default, AutoFlush is set to True for serial ports and False for files.

Exampl

Dim pfile As New StreamWriter("/flash/save.txt") ' Open permanent file

See Also

File and Serial I/O

isites

None

ters

No

s

or device. Setting it to False buffers the output and lets the system decide when to
it. Buffered output is always immediately written when a Flush or Close method is
executed.

Setting AutoFlush to True for files ma

es

pfile.AutoFlush = True

 | streamwriter_object.Flush

77

GPL Dictionary Pages

streamwriter_object.Close Method

Closes the file or device associated with a StreamWriter Object.

steamwriter_object.Close

Prerequisites

None

Parameters

None

Remarks

This method closes the file or device that is associated with a StreamWriter Object. Any

If buffered output is being written, this method blocks until the output is complete.

If any I/O error occurs, this method throws an Exception. No error occurs if the file or

Exampl

See Als

rial I/O

pending buffered output is written before the close completes.

device is not currently open.

es

streamwriter_object.Close()

o

File and Se | New StreamWriter

78

File and Serial I/O Classes

streamwriter_object.Flush Method

Immediately writes any buffered data for a StreamWriter Object.

steamwriter_object.Flush

Prerequi

stream must have been opened using a New to create the
writer_object.

Parame

Remark

is method immediately writes any buffered data to the output device or file. When
output is performed, this method blocks until it is complete.

operty is set to True.

e

request causes output to occur. If AutoFlush is False, the small write requests can be

A Flush equivalent is always performed by the Close method.

If any I/O error occurs, this method throws an Exception.

Exampl

com.Write("Write")
m.Write(" a short ")
m.WriteLine("message")

com.Flush

See Also

File and Serial I/O

sites

The output
stream

ters

None

s

Th

Calling the Flush method is redundant if the AutoFlush pr

Explicit flush operations are more efficient than setting AutoFlush to True if you are
performing a number of small write requests. If AutoFlush is True, each small writ

buffered and the entire buffer is written by a single Flush.

es

Dim com As New StreamWriter("/dev/com1")
com.AutoFlush = False ' Disable automatic flush

co
co

 | streamwriter_object.AutoFlush

79

GPL Dictionary Pages

streamwriter_object.NewLine Property

at controls how lines are terminated by the
WriteLine method.
Sets or gets the NewLine property th

steamwriter_object.NewLine = <newline_string>
-or-
...steamwriter_object.NewLIne

Prerequisites

None

Parame

Remark

This pro
performed by the streamwriter_object.WriteLine method.

By default the NewLine value is a 2-byte string containing an ASCII CR character
(decima).

Typical settings for this property are CR, LF, or CR-LF. If set to an empty string, no
rminator is added to the end of lines.

Exampl

...

tor to CR (13)

File and Serial I/O

ters

None

s

perty is a string of 0, 1 or 2 bytes that is appended to the end of any output

l 13, GPL_CR) followed by an LF character (decimal value 10, GPL_LF

te

es

Dim pfile As New StreamWriter("/dev/com1") ' Open serial port 1
pfile.NewLine = Chr(GPL_LF) ' Set terminator to LF (10)

pfile.NewLine = Chr(GPL_CR) ' Set termina

See Also

 | streamwriter_object.WriteLine

80

File and Serial I/O Classes

stream

Writes a number or a String to an output device or file.

writer_object.Write Method

steamwriter_object.) Write(number
-or-
steamwriter_object.Write(string_value)

Prerequisites

st have been opened using a New to create the
streamwriter_object.

Parameters

number

A numeric value that is converted to a String and written.

string_value

his is written. Each byte of the String may be an
arbitrary 8-bit value.

Remarks

e or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output.

 When output is
actually performed, this method blocks until it is complete.

Exampl

Dim tfile As New StreamWriter("/ROMDISK/test.tmp")
ile.Write("Test ") ' Writes "Test "

same line as "Test "

See Als

erial I/O

The output stream mu

A String expression t

This method writes String data to an output devic

Buffering of data is determined by the setting of the AutoFlush property.

If any I/O error occurs, this method throws an Exception.

es

tf
tfile.Write(3.14) ' Writes "3.14" on the

o

File and S | streamwriter_object.WriteLine

81

GPL Dictionary Pages

streamwriter_object.WriteLine Method

Writes a number or a String to an output device or file, followed by the NewLine line
terminator.

steamwriter_object.WriteLine(number)
-or-
steamwriter_object.WriteLine(string_value)

Prerequ

Parame

number

lue that is c

ession this
 value.

Remark

This method is the same as the W
operty to any o

String data t
ed to a

Buffering of data is determined by the setting of the AutoFlush property. When output is
tually performed, this method blocks until it is complete.

If any I/O error occurs, this method throws an Exception.

Examples

Dim tfile As New StreamWriter("/ROMDISK/test.tmp")
tfile.WriteLine("Test") ' Writes "Test"
tfile.WriteLine(3.14) ' Writes "3.14" on the line following "Test"

See Also

File and Serial I/O

isites

The output stream must have been opened using a New to create the
streamwriter_object.

ters

A numeric va onverted to a String and written.

string_value

A String expr
arbitrary 8-bit

 is written. Each byte of the String may be an

s

rite method with the addition that it appends the value
utput requests. of the NewLine pr

This method writes o an output device or file. If a number is passed as the
n ASCII String value and then output. argument, it is first convert

ac

 | streamwriter_object.NewLine | streamwriter_object.Write

82

Functions
Function Summary

The following sections present detailed information on the standard functions that are
e functions are not grouped into a specific Class and are
o be compatible with other Basic Language systems.

tandard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not necessary

 different variations on these functions to deal with the different possible mixes of
er data types. Also, these functions generally produce results that are

tted as Double’s. These results will automatically be converted to smaller data
 as necessary, e.g. Double -> Integer, and will not generate an error so long as

rflow does not occur.

The table bel reater
detail in

supported by GPL. Thes
provided in this manner t

As is s

to have
input paramet
forma
types
numeric ove

ow briefly summarizes the system functions that are described in g
 the following sections.

Function Description

CBool (expression) Converts any numeric type or String to Boolean
CByte (expression) Converts any numeric type or String to Byte.
CDbl (expression) Converts any numeric type or String to Double.
CInt (expression) Converts any numeric type or String to Integer.
CShort (expression) Converts any numeric type or String to Short.
CSng (expression) Converts any numeric type or String to Single.
CStr (expression) Converts any numeric type to String.

Fix (number) Truncates towards zero any numeric type returning only
the integer portion of the number.

Hex (expression) Converts an Integer value to St
format.

ring in Hexadecimal

Int (number) Truncates towards negative infinity any numeric type
ning only retur the integer portion of the number.

Rnd (seed) Retu ber. rns a pseudo random num

83

GPL Dictionary Pages

CBool

nverts any numeric type or String to a Boolean value.

 Function

Co

...CBool (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

84

Functions

Dim s_val As Single

00) ' WILL GENERATE AN ERROR

See Als

Function

s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(3

o

s | Fix Function | Int Function

85

GPL Dictionary Pages

CByte

nverts any numeric type or String to a Byte value.

 Function

Co

...CByte (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

86

Functions

Dim s_val As Single

See Als

Function

s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

o

s | Fix Function | Int Function

87

GPL Dictionary Pages

CDbl

nverts any numeric type or String to a Double value.

 Function

Co

...CDbl (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

88

Functions

Dim s_val As Single

See Als

Function

s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

o

s | Fix Function | Int Function

89

GPL Dictionary Pages

CInt

nverts any numeric type or String to an Integer value.

 Function

Co

...CInt (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

90

Functions

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

Functio

See Also

ns | Fix Function | Int Function

91

GPL Dictionary Pages

CShor

nverts any numeric type or String to a Short value.

t Function

Co

...CShort (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

92

Functions

Examples

ingle
s_val = CInt(3.14159) ' Sets s_val equal to 3

See Also

Functions

Dim s_val As S

s_val = CByte(300) ' WILL GENERATE AN ERROR

 | Fix Function | Int Function

93

GPL Dictionary Pages

CSng

nverts any numeric type or String to a Single value.

 Function

Co

...CSng (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

94

Functions

Dim s_val As Single

See Als

Function

s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

o

s | Fix Function | Int Function

95

GPL Dictionary Pages

CStr Function

Converts any numeric type to a String value.

...CStr (expression)

Prerequisites

None

Parameters

expression

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

96

Functions

Dim stg As String
stg = CStr(3.14159) ' Sets stg equal to "3.14159"

Functio

See Also

ns | Fix Function | Format Function | Int Function

97

GPL Dictionary Pages

Fix Function

Returns the integer portion of any number by truncating towards zero.

...Fix (number)

Prerequisites

None

Parameters

number

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The Int and Fix functions return the integer portion of any number by truncating the
fraction part of the value. For positive numbers, these two functions are identical.
However, for negative numbers, the Int function returns the first negative number less
than or equal to the input expression value. Alternately, the Fix function returns the first
negative number that is greater than or equal to the input expression value. For
example:

Dim s_val As Single
s_val = Int(-1.2) ' Sets s_val equal to -2
s_val = Fix(-1.2) ' Sets s_val equal to -1
s_val = Int(-1.9) ' Sets s_val equal to -2
s_val = Fix(-1.9) ' Sets s_val equal to -1

Unlike the conversion routines (e.g. CInt, CShort), these functions truncate their values
rather than round them. For example:

Dim s_val As Single
s_val = Int(1.2) ' Sets s_val equal to 1
s_val = CInt(1.2) ' Sets s_val equal to 1
s_val = Int(1.9) ' Sets s_val equal to 1
s_val = CInt(1.9) ' Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the returned
value is within the range of a specific data type. The Int and Fix routines simply
eliminate the fraction portion of any number and perform no range testing.

Examples

Dim s_val As Single
s_val = Int(3.14159) ' Sets s_val equal to 3
s_val = Int(3.99999) ' Sets s_val equal to 3

98

Functions

See Also

Functions | Int Function

99

GPL Dictionary Pages

Hex

nverts an Integer value to a String value in Hexadecimal format.

 Function

Co

...Hex (expression)

Prerequisites

None

Parameters

expression

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single,
however, the value is converted to Integer prior to conversion to a String
value.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

100

Functions

Dim stg As String
Dim ii As Integer
ii = CInt("&H1234") ' Sets ii equal to 4660
stg = Hex(ii) ' Sets stg equal to "1234"

Functio

See Also

ns | Fix Function | Format Function | Int Function

101

GPL Dictionary Pages

Int Function

Returns the integer portion of any number by truncating towards negative infinity.

...Int (number)

Prerequisites

None

Parameters

number

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The Int and Fix functions return the integer portion of any number by truncating the
fraction part of the value. For positive numbers, these two functions are identical.
However, for negative numbers, the Int function returns the first negative number less
than or equal to the input expression value. Alternately, the Fix function returns the first
negative number that is greater than or equal to the input expression value. For
example:

Dim s_val As Single
s_val = Int(-1.2) ' Sets s_val equal to -2
s_val = Fix(-1.2) ' Sets s_val equal to -1
s_val = Int(-1.9) ' Sets s_val equal to -2
s_val = Fix(-1.9) ' Sets s_val equal to -1

Unlike the conversion routines (e.g. CInt, CShort), these functions truncate their values
rather than round them. For example:

Dim s_val As Single
s_val = Int(1.2) ' Sets s_val equal to 1
s_val = CInt(1.2) ' Sets s_val equal to 1
s_val = Int(1.9) ' Sets s_val equal to 1
s_val = CInt(1.9) ' Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the returned
value is within the range of a specific data type. The Int and Fix routines simply
eliminate the fraction portion of any number and perform no range testing.

Examples

102

Functions

Dim s_val As Single
s_val = Int(3.14159) ' Sets s_val equal to 3

' Sets s_val equal to 3

See Also

Functions

s_val = Int(3.99999)

 | Fix Function

103

GPL Dictionary Pages

Rnd Function

Returns a pseudo random number.

...Rnd (seed)

Prerequisites

None

Parameters

seed

An optional expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns a pseudo random number whose value is greater than or equal to 0 and less
than 1.0.

The returned value is only pseudo random because the returned numbers are part of an
extremely long sequence of values that only repeat after 2^32 numbers are generated.
Each time that the controller is restarted, the starting point or seed in the sequence is
determined by the system clock calendar. So, the sequence of values produced by this
function appears quite random for normal testing purposes.

If it is desired to force the sequence of numbers to restart at a fixed value, thereby
allowing a test to be exactly repeated, the optional seed parameter can be used as
follows:

seed value Effect on function

<0 The specified seed value is taken as the starting point for the pseudo
random sequence and the sequence will be continued from this value. The
number returned by this execution of the Rnd will always be the same.

=0 The last value returned by the Rnd function will be returned again.
>0 The next number in the pseudo random sequence will be returned.

Not specified Same as specifying a seed value >0.

Examples

Dim r_val As Single
r_val = Rnd() ' Sets r_val to some random value
r_val = Rnd(-1) ' Forces seed to –1, will return same number
 ' each time.
r_val = Rnd() ' Returns next value after seed
r_val = Rnd(0) ' Returns same value as last line above

104

Functions

See Also

Functions

105

Latch
Latch Class Summary

The following pages provide detailed inform
nd it Ob

 re ch e
configured as latch inputs. These results a captured with
high accuracy when a digital input value changes.

The Latch Class defines Latch Objects that contain the time when the latch occurred
and the robot axis positions at that time. This class also includes methods and properties
for accessing the queue of latch results, and for accessing the results themselves.

When a latch occurs, as specified by the Latch Input configuration, a Latch Object is
created and placed in a queue. Each robot has an independent queue, kept in order of
time, with the oldest objects first. All the axes of a robot are latched simultaneously, so
the entire position and orientation of the robot is available.

Belts are a special case of robots and are normally configured as "encoder only" robots.
Multiple belts or robots, or any combination of the two, may be latched simultaneously by
a single latch input or independently by separate latch inputs. Each belt or robot may be
latched by up to 12 different latch inputs.

The Latch Class allows a latch queue to be associated with a system thread event (see
Thread Class, method WaitEvent) so that an event is sent to a thread whenever a new
latch is placed in the queue. By waiting for events, a GPL thread may efficiently wait for
latches to occur.

For a general discussion of Latches, please see the Controller Software > Introduction
To The Software > Communications > Digital Inputs and Outputs > Latch Inputs
section of the Precise Documentation Library.

The table below briefly summarizes the methods and properties that are described in
greater detail in the following sections.

 Class

ation on the properties and methods of the
ject instances, provide a means for GPL
vents generated by digital input signals
llow a robot or belt position to be

Latch Class. This class, a
procedures to receive the

s Latch
sults of lat

Member Type Description

latch_object.Angle Property Returns the latched value of the specified axis
angle. Avoids creating a Location object.

Latch.Count Shared
Property

Returns the number of latch results pending
for a robot or conveyor belt.

Latch.Flush Shared
Method

Flushes all latch results pending for a robot or
conveyor belt.

latch_object.Location Method
Returns a Location object containing the
latched position, as a Cartesian value or a set
of angles.

Latch.Result Shared
Method

Removes the next latch result from the queue
for a robot or belt and returns it as a Latch
object. Returns Nothing if the queue is empty.
Throws an exception if a result was lost due to
an overflow.

106

Latch Class

latch_object.Signal Property Returns the number of the digital input signal
that generated the latch.

Latch.ThreadEvent Share
Prope

d
rty

Associates a thread event with a robot or belt.
The thread event gets set if the latch queue
contains latch results or when new latch
results are added.

latch_object.Timestamp
Returns the timestamp when the latch

Property occurred as a Double value, consistent with
the Controller.Timer property.

107

GPL Dictionary Pages

latch_object.Angle Property

 that returns the latched value of the specified axis angle. Avoids
creating a location object.
Read-only property

…latch_object.Angle(axis)

Prerequisites

ching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

axis

returned. If not specified, a default value of 1 is assumed.

Remarks

urns the specified angle from a Latch object. It is more efficient than
using latch_object.Location(1).Angle(1) since it does not require the creation of an

rmediate Location object.

Exampl

m lat As Latch
lat = Latch.Result(1) ' Get next latched value

le.WriteLine("Latched angle 1: " & CStr(lat.Angle(1)))

See Also

Latch Class

Requires that the Encoder Lat

An optional numeric expression that specifies the angle whose value is

This property ret

inte

es

Di

Conso

 | latch_object.Location| location_object.Angle

108

Latch Class

Latch.Count Shared Property

ing in the
queue for a robot.
Read-only shared property that returns the number of Latch objects pend

…Latch.Count(robot)

Prerequisites

ching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

robot

e to be
accessed. If not specified, a default value of 1 is assumed.

Remarks

r a

))

See Als

Requires that the Encoder Lat

An optional numeric expression that specifies the robot queu

This property returns the number of Latch objects pending in the Latch queue fo
specified robot.

Examples

Console.WriteLine("Pending latch results: " & CStr(Latch.Count

o

Latch Class

109

GPL Dictionary Pages

Latch.Flush Shared Method

Removes all pending results from the Latch queue for a specified robot.

Latch.Flush(robot)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

robot

Remarks

roperty removes all Latch result objects from the specified robot queue. It also
sets any pending overflow errors for that queue. After calling this method, the

Latch.Count property for the queue will be 0, until new latches occur.

Exampl

Latch.Flush(1)

Latch Class

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

This p
re

es

Console.WriteLine("Latch results: " & CStr(Latch.Count(1)))
 ' Displays value of 0

See Also

110

Latch Class

latch_object.Location Method

Returns a Location object that contains the latched position of a robot.

…latch_object.Location(type)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License

Parameters

type

A required numeric expression that specifies the type of Location object
n

n contains a
set of axis position values. This parameter is consistent with the
location_object.Type property.

Remark

 returns the latched robot position and orientation as a new Location object
of the specified type. This Location object may then be used like any other Location

ent

Exampl

 lpos As Location
 = Latch.Result(1) ' Get next latched value

lpos = lat.Location(0) ' Cartesian Location
nsole.WriteLine("Latched X: " & CStr(lpos.X))

See Als

Latch C

be installed on the controller.

to be returned. A value of 0 indicates the Location contains Cartesia
position and orientation information. 1 indicates the Locatio

s

This property

object. All the axes of the robot are latched simultaneously, so the total robot position at
the time of the latch is consistent.

If a single latched angle is of interest, the latch_object.Angle property is more effici
since it does not create a Location.

es

Dim lat As Latch
Dim
lat

Co

o

lass| latch_object.Angle| location_object.Angle

111

GPL Dictionary Pages

Latch.Result Shared Method

Returns a Latch object containing the next result from a latch queue. Returns Nothing if
the queue is empty.

…Latch.Result(robot)

Prerequisites

ching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be

Remarks

. This object contains the latch result
information.

If the latch queue is empty, this method returns a Nothing value, so the caller should test
s it is kno he queue is not empty.

Latch results are returned by the Latch.Resu
received, with the oldest results returned first

c e on
lo countered in

DataID 2251, (Latch queue max).

Examples

c
s

While Not lat I
 Console.WriteLine) & ": " & _
)

)
h

End While

See Also

Latch Class

Requires that the Encoder Lat

accessed. If not specified, a default value of 1 is assumed.

This method removes the next latched result from the latch queue associated with the
specified robot. A new Latch object is returned

for Nothing unles wn that t

lt method in the order that they were
.

 queue, this method throws an excepti
the queue. The queue size is determined by

If an overflow o
when the overf

curred during the filling of th
w position is en

Dim lat As Lat
lat = Latch.Re

h
ult(1)
s Nothing

(CStr(lat.Signal
 CStr(lat.Timestamp
 CStr(lat.Angle(1))
.Result(1)

& ", " & _

 lat = Latc

112

Latch Class

latch_object.Signal Property

Returns the num lber of the digital input signa that generated a latch result.

…latch_object.Signal

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License

s

Remarks

Latch results are created when a digital input signal changes from low to high or high to
low, depending on the latching configuration.

This property returns the number of the digital input signal that triggered the latching. If
the signal number is positive, the input changed from low to high. If the signal number is
negative, the input changed from high to low.

The possible signal numbers are shown in the table below.

be installed on the controller.

Parameter

None

Signal Number Type Description

10001 - 10002 Local hardware latching, if
available.

Signals are monitored by hardware for high-
accuracy latching. Position errors as low as
4µm are possible when an axis is traveling at 1
meter/second depending on sensors.

If hardware signal 10001 is bi-directional (i.e.
both upward and downward transitions trigger
latching), signal 10002 may not be used for
latching.

10001 - 10012

Local software latching.
Inputs used for hardware
latching may not be used
for software latching.

Signals are monitored by software. Position
errors as low as 1mm are possible when an
axis is traveling at 1 meter/second.

10033 - 10040 ZIO board input software
latching.

Signals are monitored by software. Position
errors as low as 4mm are possible when an
axis is traveling at 1 meter/second.

n10001 - n10002
Remote hardware latching,
if available, for servo
network node n.

Signals are monitored by hardware on remote
servo boards in servo network. Position errors
as low as 20µm are possible when an axis is
traveling at 1 meter/second.

113

GPL Dictionary Pages

If hardware signal n10001 is bi-directional (i.e.
both upward and downward transitions trigger
latching), signal n10002 may not be used for
latching.

n10001 - n10012 for servo network node n.

 are monitored by software. Position
errors as low as 1mm are possible when an
axis is traveling at 1 meter/second.

Remote software latching Signals

Exampl

t As Latch
lat = Latch.Result(1)

See Also

es

Dim la

Console.WriteLine("Signal: " & CStr(lat.Signal))

Latch Class

114

Latch Class

Latch.ThreadEvent Shared Property

Associates a thread event with a latch result queue.

Latch.ThreadEvent(robot) = event_mask
-or-
…Latch.ThreadEvent(robot)

Prerequisites

trols or Conveyor Tracking License
be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

Remarks

This property associates an event for the current thread with the latch result queue
specified by the robot parameter. Setting a value of zero cancels any event assignment in
effect. Only one thread may have events associated with a specific latch result queue.
The last thread to set this property gets the assignment.

The get property returns the mask for any current event assignment. A value of zero
indicates no assignment is in effect.

The event_mask is described in the dictionary page for the thread_object.SendEvent
method.

When an event mask is defined, an event is sent to the thread that set the
Latch.ThreadEvent property whenever:

1. The ThreadEvent property is set, and the latch queue is not empty.
2. A new latch result is added to the latch queue.

A thread can efficiently wait for latch results by using the Thread.WaitEvent method.

It is possible for more than one latch result to be placed in the queue when an event is
set. It is also possible for a thread event to be sent even when no items are placed in the
queue. It should not be assumed that there is a single latch result ready just because an
event is received. Verify that a latch result is present by using the Latch.Count property
or checking if the Latch.Result returns Nothing.

Examples

Requires that the Encoder Latching or Advanced Con

115

GPL Dictionary Pages

Dim lat As Latch
Latch.ThreadEvent(1) = 1 ' Send event 1 to current thread
While True
 Thread.WaitEvent(1, -1) ' Wait for event 1

Signal) & ": " & _

 lat = Latch.Result(1)
 End While

Latch C

 lat = Latch.Result(1)
 While Not lat Is Nothing
 Console.WriteLine(CStr(lat.
 CStr(lat.Timestamp) & ", " & _
 CStr(lat.Angle(1)))

End While

See Also

lass| thread_object.SendEvent | Thread.WaitEvent

116

Latch Class

latch_

rred.

object p Property .Timestam

Read-only property that returns the time when a latch occu

…latch_object.Timestamp

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

None

Remarks

This read-only property returns the timestamp that indicates when the latch_object was
created. This timestamp is a Double value, consistent with the Controller.Timer
property. It is the number of seconds since January 1, 1988 and is accurate to within 1
µsec. Given the number of significant bits in a Double value, it will not lose accuracy until
the year 2124.

Latch results are returned by the Latch.Result method in the order that they were
received, with the oldest results returned first. The Timestamp property can be used to
determine the order of latch results received from different queues, or to compute the
elapsed time between latches.

The accuracy of the timestamp depends on the type of digital input signal that triggered
the latching. The table below shows approximate values for latch timing.

Local

Hardware
Latch

Remote
Hardware

Latch

Software
Latch

ZIO Latch

Resolution 125 nsec 125 nsec 1 msec 4 msec

Latency 4 µsec (+edge or -
edge)

4 µsec (+edge or -
edge)

1 msec (+edge or
-edge) 4 msec

Pulse width
(minimum) 100 µsec 100 µsec 1.2 msec 5 msec

Repetition period
(minimum) 1.2 msec 1.2 msec 2.2 msec 10 msec

Jitter (minimum) 125 nsec 20 µsec 1 msec 4 msec
Position error at 1
meter/second 4 µm 20 µm 1 mm 4 mm

117

GPL Dictionary Pages

Examples

lat1 = Latch.Result(1) ' First latch

See Als

Latch C

Dim lat1, lat2 As Latch
Dim difference As Double

lat2 = Latch.Result(1) ' Second latch
difference = lat2.Timestamp - lat1.Timestamp
Console.WriteLine("Difference: " & CStr(difference))

o

lass| Controller.Timer

118

Location
Locat ry

rovide det rmat
Location Class. This class and its Location ide the fundamental
means for representing robot and part positio

ile Objects (w e m
standard arguments required by most Move m
along a path to a destination specified by a Lo

Each Location Object contains data that def on and
ce informatio sed robot

rmation that pertains

pe’s of Location O : A rtesian. The Angles
sitions y o e
” of an oca to the array of axes

positions. The more general Type is called a
ition and n th nt

and a set of three Euler Angles: Yaw, Pitch, a to this position and
Cartesian Loca ame

, Yaw, Pitch, valu
respect to the reference frame” (PosWrtRef).

sian Locatio disc
 reference fram ny s

must alter a ot’s
aterial handling or s

are provided for mathematically manipulating
riefly summari rope
e following se

 Class
ion Class Summa

The following pages p ailed info ion on the properties and methods of the
Object instances prov
ns and orientations within GPL. Location
otion performance parameters) are the
ethods for defining how to drive the robot

Objects and Prof hich defin

cation.

ines: a Type indicator; a positi
orientation; clearan
configuration specific info

n that is u to safely approach the Location; and
 to the target robot.

There are two Ty bjects ngles and Ca
Locations store robot po
“position” or “total position

 as an arra
 Angles L

f axes positions. When we refer to th
tion, we are referring
Cartesian Location. Cartesian Locations
at is displayed as an X, Y, Z displaceme
nd Roll. In addition

contain a Cartesian pos orientatio

orientation, each
object. The X, Y, Z

tion contain
 and Roll

s an optional pointer to a reference fr
es define the Location’s “position with
 When we refer to the “position” or “total
ussing the combined effect of the “position
pecified reference frames.

position” of a Carte
with respect to the

n, we are
e” and a

Since flexible automation rob actions in order to accommodate to
 other type of operation, extensive methodvariations in a m , assembly
 the position and orientation of Locations.
rties and methods that are described in The table below b

greater detail in th
zed the p
ctions.

Member Type Description

location_obj.Angle Property Sets and gets a single axis position for an
Angles Location.

location_obj.Angles Method Changes all of the axes positions values in
an Angles Location.

location_obj.Clone Method Returns a copy of the location_obj.

location_obj.Config Property Sets and gets the bit flags that specify
special robot specific location attributes.

location_obj.ConveyorLimit Method

ch Returns the distance that a Location, whi
is defined relative to a conveyor reference
frame, is from the operating limits of the
conveyor.

Location.Distance Method Returns the distance between the XYZ
positions of two Cartesian Locations.

location_obj.Here Method rrent
location of a robot.

Modifies the “total position” of the
location_obj to be equal to the cu

location_obj.Here3 Method Defines the "total position" of location_obj

119

GPL Dictionary Pages

based upon the XYZ coordinates of three
specified locations.

location_obj.Inverse Method Returns the inverse of the “total position” of
the Cartesian location_obj.

location_obj.Kinesol Method an Angles Location for a specific kinematic
model or vise versa.

Returns a Cartesian Location equivalent to

location_obj.Mul Method
Returns the result of combining the “total
position” of location_obj with the “total

 of another Cartesian Location. position”

location_obj.Normalize Method
Corrects the value of the PosWrtRef of a
Cartesian Location for any mathematical
inconsistencies in the value.

location_obj.Pitch Property Sets and gets the Pitch angle of the
PosWrtRef of a Cartesian Location.

location_obj.Pos Property Sets and gets the “total position” of the
location_obj.

location_obj.PosWrtRef Property Sets and gets the PosWrtRef of a
Cartesian Location.

location_obj.RefFrame Property
Sets and gets a pointer to the reference
frame object that the location_object is
defined relative to.

location_obj.Roll Property Sets and gets the Roll angle of the
PosWrtRef of a Cartesian Location.

location_obj.Text Property
Sets and gets a String value not used by
GPL. Available for general use by
applications.

location_obj.Type Property Sets and gets the Type specification.

location_obj.X Property Sets and gets the X position value of the
PosWrtRef of a Cartesian Location.

location_obj.XYZ Method values of the PosWrtRef of a Cartesian
Changes the X, Y, Z, Yaw, Pitch, and Roll

Location.

location_obj.XYZInc Method Increments the X, Y, and Z values of the
PosWrtRef of a Cartesian Location.

Location.XYZValue Method
Returns a Cartesian Location with a "total
position" equal to specified X, Y, Z, Yaw,
Pitch, and Roll coordinates.

location_obj.Y Property Sets and gets the Y position value of the
PosWrtRef of a Cartesian Location.

location_obj.Yaw Property PosWrtRef of a Cartesian Locatio
Sets and gets the Yaw angle of the

n.

location_obj.Z Property PosWrtRef of a Carte
Sets and gets the Z position value o

sian Location
f the
.

location_obj.ZClearance Property
nce along the Z-axis

that defines the safe approach position to
the Location.

Sets and gets the dista

location_obj.ZWorld Property
Sets and gets the flag that indicates if the
approach distance is measured along the
Tool or World Z coordinate axis.

120

Location Class

location_object.Angle Property

Sets and gets the position of a single robot axis, in units of millimeters or degrees, to and
from an Angles Location Object.

location_object.Angle(axis) = <new_numeric_value>
-or-
...location_object.Angle(axis)

Prerequisites

t must be an Angles Location Object.

Parameters

axis

A required numeric expression that specifies the number of the axis to be
accessed. This value can range from 1 for the first axis up to a maximum
value of 12.

Remark

Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although

for

The Angle property allows a program to access and manipulate individual axis position
e utilized.

ct is not of the Angles type, accessing the Angle property will
generate an error.

Examples

ition

The location_objec

s

An Angles

the trajectory generation task will only make use of one value for each axis configured
the robot.

values. To set all of the axes positions at one time, the Angles method should b

If the location_obje

Dim loc1 As New Location ' Create new Location set to default values
Dim ang As Double

d define posloc1.Angles(-21.5, 23.2, 10) ' Set loc1 to Angles type an
ang = loc1.Angle(2) ' ang will be set to 23.2
loc1.Angle(2) *= 2 ' Position of axis 2 will be 46.4

See Also

Location Class | location_object.Angles

121

GPL Dictionary Pages

location_object.Angles Method

n Angles Location Object. Changes all of the axes positions values stored in a

location_object.Angles(axis_1, ..., axis_12)

Prerequisites

None

Parameters

axis_1,…,axis_12

Up to 12 optional numeric expressions that specifies the new position
value for each of the robot axes. If an expression is not specified, the

 value is in

Remarks

values. For generality, a Location Object always contains 12 axes positions although

The An of all of the axes positions in the location_object.
Any uns 0. To read or write individual axis positions, the

 property should be utilized.

n Angles

Exampl

Dim loc1 As New Location ' Create new Location with default values
As Double

(-21.5, 23.2, 10) ' Set loc1 to Angles type and define
ang = loc1.Angle(2) ' ang will be set to 23.2
loc1.Angle(2) *= 2 ' Position of axis 2 will be 46.4

See Also

Location Class

corresponding axis position will default to a value of 0. Each
units of millimeters or degrees as appropriate for the axes.

An Angles Location Object stores the position of the robot as a set of axes position

the trajectory generation task will only make use of one value for each axis configured for
the robot.

gles method sets the values
pecified positions are set to

Angle

As a convenience, independent of the initial Type of the location_object, at the
conclusion of this operation, the location_objectType will be set to indicate it is a
Location Object.

es

Dim ang
loc1.Angles

 | location_object.Angle

122

Location Class

location_object.Clone Method

Method that returns a copy of the location_object.

...location_object.Clone

Prerequi

Parameters

e

Remarks

ects, if a program contains a simple assignment statement:

n independent copy of an object, the Clone method is the standard

Exampl

 Create new location set to default values
loc2 ' Create new location with no data allocated

See Als

Locatio

sites

None

Non

For obj

object_1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make a
means for performing this operation:

object_1 = object_2.Clone

es

Dim loc1 As New Location '
Dim As Location
loc1.X = 10.2 ' Set X position in loc1.
loc2 = loc1.Clone ' Makes a copy of loc1 data
loc2.Y = -27.1 ' Doesn't affect loc1 data

o

n Class

123

GPL Dictionary Pages

location_object.Config Property

Sets and gets an Integer bit mask that specifies how the Cartesian position of a
Location Object is to be converted to a set of axes position values.

location_object ig = < lue> .Conf new_Integer_va
-or-
.. n_object.Config .locatio

Prerequi

N

Paramet

None

Remark

 some robots, there are multiple sets of axes positions that will position the robot’s tool
ripper at the same position and orientation. For simple robots, this can occur if a wrist

is can rotate more than 360 degrees. For more complex geometries, the alternate sets
ft” shoulder

lecting among
ferent sets of positions in some instances. For example, if the final wrist axis of a robot
n rotate a total of 720 degrees, GPL can automatically select which revolution of this

on for a motion to a Cartesian end point.
e closest position that satisfies the Cartesian

specification. However, if this would violate a wrist joint limit stop, GPL will rotate the
wrist in the opposite direction.

In other cases, GPL cannot automatically select the best set of joint angles to be used.
In these cases, GPL will generally try to maintain the robot in the same configuration
unless instructed otherwise. For example, if a position can be reached in both a "right"
and a"left" shouldered configurations, GPL will maintain the same shoulder configuration
unless explicitly directed to change. This is done to prevent large, unexpected motions
that can occur when switching the shoulder configuration.

To both indicate the current geometric configuration and to specify a change in
configuration, the Config property provides a series of bit flags that instruct GPL how it is
to convert Cartesian Locations into joint angles. When a Cartesian destination is
specified with one or more of these bits set, the next motion to this Location will try to put
the robot into the specified configuration. If bits are not set, GPL assumes that the robot
should be instructed to stay in its current configuration.

While some configuration changes can be implemented during either a Cartesian or joint-
interpolated motion, other changes can only be performed during joint-interpolated
motions. For example, you cannot change from a right to a left shouldered configuration

sites

one

ers

s

For
or g
ax
of axes positions might correspond to what is termed “right” and “le
configurations.

GPL’s optional kinematic modules include methods for automatically se
dif
ca
axis should be selected as the destinati
Normally, GPL will rotate the wrist to th

124

Location Class

and simultaneously move the tool tip along a Cartesian straight-line path. If a
configuration bit is specified which is not compatible with the specified motion type, the

enerated.

configuration bit is ignored and no error is g

The bits currently defined for the Config property are described in the following table. As
a programming convenience, these bits also have GPL constants defined.

Config
Bit

Mask

GPL
Constant

Legal During
Cartesian

Motion
Description

 &H01 GPL_Righty No Change robot to a right shouldered configuration.

 &H02 GPL_Lefty No Change robot to a left shouldered configuration.

 &H04 GPL_Above No Change robot to have the elbow above the wrist.

 &H08 st. GPL_Below No Change robot to have the elbow below the wri

 &H10 GPL_Flip No Change robot to have the wrist pitched up.

 &H20 GPL_NoFlip No Change robot to have the wrist pitched down.

 &H1000 GPL_Single Yes
Restrict the wrist axis to be within +/- 180
degrees rather than use its full range of motion.

Since the rob se see
the docu ot.

See Also

Locatio

ot configuration options are a function of the robot's geometry, plea
mentation in the Kinematics Library for which bits apply to your rob

Examples

Dim loc1 As New Location ' Create new Cartesian Location
loc1.Config = GPL_Righty+GPL_Single
 ' Set mask word to force robot to right
 ' shouldered and limit wrist rotation

n Class | Robot.Dest | Robot.Where

125

GPL Dictionary Pages

location_object.ConveyorLimit Method

erence
frame, is from the operating limits of the conveyor belt.
Returns the distance that a Location, which is defined relative to a conveyor ref

...location_object.ConveyorLimit(mode)

Prerequisites

• location_object must be a Cartesian Location Object that is defined with respect
to a conveyor RefFrame.

• The Conveyor Tracking software license must be installed on the controller.

Parameters

mode

An optional numeric expression that defines the specific test to be
performed. If not specified, this value defaults to 0.

Remarks

This method is utilized in conveyor tracking applications to determine if a position is
currently within a conveyor belt's operating limits and, if so, by how much. It is often used
to sort the positions of multiple parts to select the part that is best to pick and to reject
parts that are already too far downstream.

The following table describes the returned value based upon the setting of the mode
argument. All distances are in units of mm.

Mode Returned Value

0 Returns 0 if the Location is within the upstream and downstream limits,
else <0 indicates distance upstream of the upstream limit or >0 indicates
distance downstream of the downstream limit.

1 Returns <0 to indicate the distance upstream of the upstream limit and =>0
the distance downstream of the upstream limit

2 Returns <0 to indicate the distance upstream of the downstream limit and
=>0 the distance downstream of the downstream limit.

Examples

Dim belt1 As New RefFrame
Dim loc1 As New Location
belt1.Type = 2 ' Conveyor reference frame
belt1.ConveyorRobot = 2 ' 2nd robot is conveyor
belt1.ConveyorOffset = Robot.WhereAngles(2).Angle(1)
loc1.RefFrame = belt1 ' Zero encoder
loc1.Here ' Test current robot loc
If (loc1.ConveyorLimit(0) <> 0) Then
 Console.WriteLine("Out of range")

126

Location Class

End If

Locatio

See Also

n Class | refframe_object.ConveyorOffset | refframe_object.ConveyorRobot

127

GPL Dictionary Pages

Location.Distance Method

he XYZ positions of two Cartesian Location Objects. Returns the distance between t

...Location.Distance(location_object1, location_object2)

Prerequi

location_object1 and location_object2 must both be Cartesian Location Objects.

Parameters

location_object1

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

ation_object2

Remarks

Exampl

Dim dist As Double

See Also

Locatio

sites

loc

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

This method computes the distance between the positions of two Cartesian Location
Objects and returns the result as a Double. The result is always a positive number.

es

Dim a As New Location ' Create Locations and allocate
Dim b As New Location

a.XYZ(10,23,-17,0,0,90) ' Define A, orientation doesn't matter
b.XYZ(21,8,12) ' Define B
dist = Location.Distance(a,b) ' dist set equal to 34.45287

n Class

128

Location Class

locatio

ts the “total position” of a Location Object equal to the current position and orientation
 the Selected robot.

n_object.Here Method

Se
of

location_object.Here

Prerequisites

A robot must be currently Selected, but need not be Attached.

Parameters

None

Remarks

The Here method provides a very convenient means for defining or updating the “total
position” of a location_object by moving the robot to the desired position and then
executing this method to record the position and orientation.

This method works properly for both Cartesian and Angles Locations. If the
location_object is an Angles type, the values of the location_object’s axes positions are
set equal to the current axes positions of the Selected robot. For Cartesian types, the
“total position” is set equal to the current Cartesian position and orientation of the
Selected robot and its Config properties are updated. If the location_object does not
have an associated reference frame, the PosWrtRef is set equal to the current Cartesian
location of the robot. If the location_object has a reference frame, the PosWrtRef is set
such that the combination of the new PosWrtRef and the reference frame will be equal to
the current location of the robot.

While the Here method is similar to assigning a location_object to the value of the
Robot.Where() method, it is important to understand the differences. The statement:

location_object = Robot.Where() ' Works okay

assigns a new block of data to the location_object. While it does save the current robot
location in the location_object, the values previously set for ZClearance, ZWorld, and
RefFrame are effectively lost. On the other hand, the statement:

location_object.Here ' Even better

alters the PosWrtRef and Config values in the location_object with less overhead while
still preserving the values for ZClearance,ZWorld, and RefFrame. So, in most situations,
the Here method produces the expected results and should be employed instead of an
assignment statement with Robot.Where().

129

GPL Dictionary Pages

Examples

Dim loc1 As New Location ' Create new Location set to default values

See Also

Location Class

loc1.Here ' Sets "total position" of loc1 to present
 ' location of Selected robot.

 | location_object.Here3 | location_object.Inverse | location_object.Mul | Robot.Selected
| Robot.Where | Robot.WhereAngles

130

Location Class

location_object.Here3 Method

Defines the "total position" of a Location Object based upon the XYZ coordinates of
three specified Locations.

location_object.Here3(location_0, location_x, location_y)

Prerequi

.

Parame

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_y

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method is utilized for setting the "total position" of location_object based upon the
XYZ position coordinates of three Locations. This is convenient if you wish to define the
orientation and position of a Location or reference frame by teaching three Locations.

The total position of the location_object is computed as follows:

• The XYZ coordinates of the location_object are set equal to the XYZ coordinates
of the total position of location_0. That is, the XYZ coordinates of location_0
define the 0,0,0 position of the coordinate system defined by the new value of
location_object.

• The direction of the x-axis of location_object is defined to be parallel to the vector
from the XYZ coordinate of location_0 to the XYZ coordinate of location_x. That
is, if the XYZ position of location_0 is equivalent to the 0,0,0 position of the
coordinate frame defined by the new value of location_object, then the XYZ
position of location_x will be a point on the x-axis of the coordinate system
defined by the new value of location_object.

• The XY plane of the new location_object value is defined by the XYZ coordinates
of location_0, location_x, and location_y. Normally, location_y is defined such

sites

location_0, location_x and location_y must be Cartesian Location Objects

ters

location_0

location_x

131

GPL Dictionary Pages

that its XYZ position will be a point on the y-axis of the coordinate system defined
by the new value of location_object.

PosWrtRef value of the location_object will be set
d orientation
, as a

convenience, the Type of the location_object is always set to indicate it is a Cartesian

cation
Dim loc0 As New Location

 As New Location
 As New Location

loc0.XYZ(10,20,30) ' Define 0,0,0
YZ(10,25,30) ' Define point on X-axis
YZ(5,20,30) ' Define point on Y-axis

loc1.Here3(loc0,locx,locy) ' Will define loc1 to same as
 ' loc1.XYZ(10,20,30,0,0,90)

See Als

Locatio

At the completion of this method, the
such that the total position of location_object corresponds to the position an
defined by three points represented by the three Location arguments. Also

Location Object.

Examples

Dim loc1 As New Location ' Define position of this Lo

Dim locx
Dim locy

locx.X
locy.X

o

n Class | location_object.Here | location_object.XYZ

132

Location Class

location_object.Inverse Method

Returns the inverse of the “total position” of the Cartesian location_object.

...location_object.Inverse

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

This me he
value. A
location sociated
with the location_object.

As an example, if the “total position” of the location_object represents the position and

Assuming that the location_object is a Cartesian type, the Inverse method returns a

thod evaluates the “total position” of the location_object and then inverts t
s defined in the description of GPL, the “total position” is the combination of the
_object’sPosWrtRef with the “total position” of any reference frame(s) as

orientation of part B with respect to part A, then the Inverse will give the position and
orientation of A with respect to B. As another way to think about this operation, if the
location_object defines how to get from A to B then the Inverse will define how to get
from B to A.

Location Object with the following properties:

Property Returned Location Object value

Type Cartesian Location
PosWrtRef al position” of the location_objectInverse of the “tot
RefFrame Null
All other properties Same as location_object

Examp

ew Location set to defaults

Dim dy As Double
11, -23, 45, 0, 180, 4
c1.Inverse

 loc2.Inverse ve same "position" as loc1
c3.Y ' dy will be equal to -23

See Al

Locati

les

Dim loc1 As New Location ' Create n
Dim loc2, loc3 As Location

loc1.XYZ(
loc2 = lo

2) ' Define "position" of loc1

loc3 =
dy = l

 ' loc3 will ha
o

so

on Class | location_object.Pos | location_object.Mul | location_object.PosWrtRef

133

GPL Dictionary Pages

location_object.KineSol Method

 Object equivalent to an Angles Location Object for a Returns a Cartesian Location
specific kinematic model or vise versa.

...location_object.KineSol(mode)

Prerequisites

Parameters

mode

An optional numeric expression that defines the operational mode for this
function. If this value is 1, any conversion errors (e.g. joint out-of-range,
position too far/close) are ignored. If this value is 0, these errors will
generate a program exception. If not specified, this value defaults to 0.

Remarks

This method converts a set of axes positions to an equivalent Cartesian position and
orientation or converts a Cartesian position and orientation to an equivalent set of axes
positions based upon the Selected robot’s geometry (kinematics). These operations are
typically called the “forward and reverse kinematic solutions” and require an optional
kinematic module.

Specifically, if the location_object is an Angles type, the KineSol method returns a
Location Object with the following properties:

A robot must be currently Selected, but need not be Attached.

Property Returned Location Object value

Type Cartesian Location
PosWrtRef Equivalent to location_object Angles values
Config Appropriate for location_objectAngles values
RefFrame Null
All other properties Same as location_object

Alternatively, if the location_object is a Cartesian type, the KineSol method returns a
Location Object with the following properties:

Property Returned Location Object value

Type Angles Location
Angles Equivalent to location_object’s“total position”
Config 0
RefFrame Null
All other properties Same as location_object

134

Location Class

Examples

Dim loc1 As New Location ' Create new Location set to default values

hese values legal values for robot
loc2 = loc1.KineSol ' Set loc2 to equivalent Cartesian Location

rate Angles Location
should be 42 as in loc1

Locatio

Dim loc2, loc3 As Location
Dim axis2 As Double
loc1.Angles(12, 42, 17) ' Assume t

loc3 = loc2.KineSol ' Regene
axis2 = loc3.Angle(2) ' axis2

See Also

n Class | location_object.Inverse | location_object.Mul | Robot.Selected

135

GPL Dictionary Pages

location_object.Mul Method

Returns the combination of t ct
r Cartesian Loca

he position and orientation of a Cartesian location_obje
with anothe tion Object.

...location_object.Mul(location_object2)

Prerequi ites

n_object2 must both be Cartesian Location Objects.

Parame

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

This method combines the “total position” of location_object and the “total position” of
location_object2. As described in the Introduction to GPL, the “total position” of a
Location Object is the combination of the Location Object’sPosWrtRef with the “total
position” of any reference frame(s) associated with the Location Object.

More specifically, the Mul method returns the result of evaluating the “total position” of
location_object2 with respect to the PosWrtRef value of the location_object. If defined,
the reference frame pointer for the location_object is copied to the returned Location and
is not included in the mathematic operation. This is done to preserve the explicit
reference frame relationship of the location_object.

For example, let’s consider the simple case without rotations where the location_object
has an X, Y, Z value of (10,25,-40) and location_object2 has an X, Y, Z value of (0,5,0). If
we now combined the values, location_object2’s incremental displacement of 5 mm along
the Y-axis would be interpreted with respect to location_object’s prior translations and the
combined result would be (10,30,-40). Now, we can see what happens if we change
location_object so it includes a 90-degree rotation about the Z-axis (10,25,-40,0,0,90). In
this case, when we combine the two values, location_object2’s Y-axis has been rotated
to point along location_object’s negative X-axis. So, the resulting combination would be
(5, 25,-40,0,0,90).

Assuming that location_object and location_object2 are both Cartesian Locations, the
Mul method returns a Location Object with the following properties:

s

location_object and locatio

ters

location_object2

Remarks

Property Returned Location Object value

Type Cartesian Location
PosWrtRef “total position” of the location_object2 evaluated with respect to

the PosWrtRef of the location_object. In terms of matrix

136

Location Class

operations, this could be written as:

returned.PosWrtRef = [location_object.PosWrtRef]

 *[location_object2.RefFrame]
 *[location_object2.PosWrtRef]

RefFrame Same as location_object
All other properties Same as location_object

Examples

Dim a As New Location ' Create new Location set to default values

As New Location

Dim dx, dy As Double

Mul(b)
c.X ' dx will be 5

dy = c.Y ' dy will be equal to 25

See Also

ss

Dim b
Dim c As Location

a.XYZ(10,25,-40,0,0,90) ' Define A
b.XYZ(0,5,0) ' Define B
c = a.
dx =

Location Cla | location_object.Inverse | location_object.Pos | location_object.PosWrtRef

137

GPL Dictionary Pages

locatio

Corrects the PosWrtRef value of a Cartesian Location Object for any mathematical

n_object.Normalize Method

inconsistencies in the value.

location_object.Normalize

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

t

Exampl

See Als

Location Class

After many sequential mathematics operations (e.g. Inverse, Mul) have been performed
on a Cartesian Location Object, it is possible for the homogeneous transformation tha
is used to internally store the PosWrtRef value to suffer from mathematical
inconsistencies. For example, certain rows and columns of the 4x4 matrix are vectors
that must have unit values and be orthogonal to other vectors in the matrix. Given that all
of the elements of a transformation are stored as double precision floating-point numbers,
this problem is not very likely to occur.

Nonetheless, as a convenience, the Normalize method can be executed on a Cartesian
location_object and it will correct any mathematic errors that may have accumulated in
the PosWrtRef value.

es

Dim loc1 As New Location ' Create new Location set to default values
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
loc1.Normalize ' Won't alter loc1 since it is already correct

o

 | location_object.Inverse | location_object.Mul

138

Location Class

location_object.Pitch Property

Sets and gets the Pitch angle, in units of degrees, for the PosWrtRef value of a
Cartesian Location Object.

location_object.Pitch = <new_value>
-or-
...location_object.Pitch

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim ang As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will now be 30 deg.

139

GPL Dictionary Pages

See Also

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
location_object.Roll | location_object.XYZ

140

Location Class

location_object.Pos Property

Sets and gets the “total position” of the location_object.

location_object.Pos = <specified_location_value>
-or-
...location_object.Pos

Prerequi

None

Parameters

Remark

 Cartesian and Angles Location

f
the <specified_location_value> must match the type of the location_object, i.e. they must

r be Cartesian or Angles.

s, the “total po
cified_loca es not have an

 reference frame, the Pos set equal to the “total position” of the
location_value>. If the lo ame, the PosWrtRef

bject is set su PosWrtRef value
of the location_object and its reference frame will be equal to the “total position” of the

ecified_location_value>. If the location_object is an Angles type, the value of the
location_object’s axes positions are set equal to the axes positions of the

pecified_location_value>.

ilar to assigning a location_object to the value of another
ment:

location_object = location_object2

assigns a pointer to location_object2’s data to the location_object. Not only does this

also supercedes any other data assigned, such as its ZClearance information.
Furthermore, if you subsequently make a change to the data of either location_object or

sites

None

s

The Pos operation accesses the “total position” of both
Objects. For Cartesian Locations without reference frames, the “total position” is equal
to the PosWrtRef value stored as a Cartesian position and orientation in the
location_object. For Cartesian Locations with reference frames, the “total position” is
equal to the PosWrtRef value of the location_object evaluated with respect to the “total
position” of its reference frames. For Angles Locations, the “total value” is the equal to
the set of axes positions stored in the location_object.

The Pos set operation works properly on all varieties of Locations. However, the type o

both eithe

For Cartesian Location
“total position” of the <spe

sition” of the location_object is set equal to the
tion_value>. If the location_object do
WrtRef value isassociated
cation_object has a reference fr<specified_

value of the location_o ch that the combination of the new

<sp

<s

While the Pos method is sim
Location Object, it is important to understand the differences. The state

operation supercede any reference frame you may have assigned to location_object, it

141

GPL Dictionary Pages

location_object2, the data for both objects will be effected. Alternatively, you could use
the following assignment statement:

t2.Clone

lue before assigning it to
tential problem of having two

variables inadvertently ref ing the same data. However, this operation still
ification and other data. Also,

dditional down ration is that creating a copy of an object’s value does
m overhead.

e other hand, the statement:

alters the PosWrtRef or Angles values of location_object with low overhead and
preserves all of the other properties of the location_object.

If the goal of a statement is simply to update the existing “total position” or PosWrtRef
value of a Location without regard to the reference frame, you should normally make use
of either the Pos or PosWrtRef set properties.

nd returned as the PosWrtRef value of the returned Object.

location_object = location_objec

This statement makes a copy of location_object2’s va
location_object. This statement does eliminate the po

erenc
supercedes location_object's original reference frame spec
one a side of this ope
incur a certain amount of syste

On th

location_object.Pos = location_object2

Regarding the Pos get operation, this property returns a Location Object that contains
only the “total position” of the location_object with no reference frame or other data.
Please note that if the location_object is a Cartesian type with a reference frame, the
position and orientation of the PosWrtRef value and the “total position” of the reference
frame are combined a

For all cases the value of the returned Object from the Pos get operation is as follows:

Property Returned Location Object value

Ty Cartesian or Angles Location as appropriate pe
PosWrtRef or Angles “total position” of the location_object
RefFrame Always NULL
ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Exampl

s New Location ' Create new Location set to defaults
 New Location
ance

0,180,23) ' f value for loc2
loc1 = loc2 ' Use same "total position" for loc1

Locatio

es

Dim loc1 A
Dim Aloc2 s
loc1.ZClear = 12
loc2.XYZ(10,20,30,

.Pos
Define PosWrtRe

See Also

n Class | location_object.Inverse | location_object.Mul | location_object.PosWrtRef

142

Location Class

location_object.PosWrtRef Property

Sets and gets the “position with respect to the reference frame” value of a Cartesian
Location Object while ignoring the reference frame.

location_object.PosWrtRef = <specified_location_value>
-or-
...location_object.PosWrtRef

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

This property accesses the “position with respect to the reference frame” of a Cartesian
Location Object. Normally, the PosWrtRef value is evaluated in combination with the
reference frame to compute the “total position” of a Location. However, this property
accesses the “position with respect to the reference frame” data ignoring any specified
reference frame data.

The PosWrtRef set operation allows a statement to assign a new value to the “position
with respect to the reference frame” of the location_object without affecting or considering
the value of any reference frame or any other data of the location_object. The new value
is set equal to the “total position” of the <specified_location_value> on the right hand side
of the equal sign.

The PosWrtRef get operation returns a Cartesian Location Object that contains only the
“position with respect to the reference frame” of the location_object with no reference
frame or other data. In particular, the value of the returned Object is as follows:

Property Returned Location Object value

Type Cartesian Location
PosWrtRef PosWrtRef of the location_object
RefFrame Always NULL
ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim loc2 As New Location
loc1.ZClearance = 12
loc2.XYZ(10,20,30,0,180,23) ' Define position for loc2
loc1.PosWrtRef = loc2.PosWrtRef ' Use same PosWrtRef for loc1

143

GPL Dictionary Pages

See Also

Location Class | location_object.Inverse | location_object.Mul | location_object.Pos

144

Location Class

location_object.RefFrame Property

Sets and gets a pointer to the reference frame object that the location_object is defined
relative to.

location_object.RefFrame = <reference_frame_object>
-or-
… location_object.RefFrame

Prerequisites

The location_object must be a Cartesian Location.

Parameters

None

Remarks

Sets or gets the pointer to a reference frame object that the location_object’s position and
orientation is to be defined relative to. Whenever the location_object’s total position an
orientation are computed, the position and orientation of the RefFrame are automatica
taken into consideration.

When a new Location Object is defined, its pointer to a reference frame object is zeroed
by default.

es

d
lly

Exampl

Dim As New RefFrame

loc1.XYZ(10,0,0,0,180,0) ' Define loc1 poswrtref

See Also

Locatio ss

 ref1 ' Also allocates Loc
Dim loc1 As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
loc1.RefFrame = ref1 ' Define loc1 wrt ref1

Console.Writeline(loc1.Pos.X) ' Displays 107.07
Console.Writeline(loc1.Pos.Y) ' Displays 97.07
Console.Writeline(loc1.Pos.Z) ' Displays -80

n Cla | RefFrame Class

145

GPL Dictionary Pages

location_object.Roll Property

Sets and gets the Roll angle, in units of degrees, for the PosWrtRef value of a Cartesian
Location Object.

location_object.Roll = <new_value>
-or-
...location_object.Roll

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim ang As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will now be 30 deg.

See Also

146

Location Class

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
location_object.Pitch | location_object.XYZ

147

GPL Dictionary Pages

location_object.Text Property

d with a Location Object. This field is not used by GPL
and is provided for use by application programs.
Sets and gets a String associate

location_object.Text = <string_value>
-or-
...location_object.Text

Prerequi

Parame

Remark

is Text property allows an application programmer to associate an arbitrary String
value with a Location object. For example, this can be used to document how the

Examples

Dim loc1 A ew Locati
loc1.Text This is m
Console.WriteLine(loc1.Text)

See Als

Location Class

sites

None

ters

None

s

Th

object is employed or to store a description of the object that is subsequently displayed
when the object is accessed or taught.

s N
= "

on ' Create new Cartesian Location
y location"

o

 | profile_object.Text | refframe_object.Text

148

Location Class

locatio

Sets and gets the Integer Type of a Location Object, which indicates if the Location
data.

n_object.Type Property

Object holds Cartesian or Angles

location_object.Type = <new_Integer_value>
-or-
...location_object.Type

Prerequ

Parameters

ne

Remark

isites

None

No

s

The Type property indicates if the location_object contains Cartesian or Angles position
and orientation data. The possible values for this property are as follows:

Type Value Description

0 Location contains Cartesian position and orientation data.
1 Location contains a set of axes position values (“Angles”).

Many of the other Location Object properties and methods will generate an error if you

As a convenience, some methods, e.g. Angles and XYZ, automatically set the Type of a
Location Object.

When a “New” Cartesian Location is created, its Type is automatically set to Cartesian.

Exampl

 loc1 As New Location ' Create new Cartesian Location
Dim iType As Integer

ype =loc1.Type ' iType will be set to 0
Angles Type to 1

See Als

Location Class

attempt to access values that are not meaningful for the current Type of the
location_object.

es

Dim

iT
loc1. (10.2,-3.2) ' Will automatically set

o

149

GPL Dictionary Pages

location_object.X Property

Sets and gets the displacement along the X-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.X = <new_value>
-or-
...location_object.X

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim dx As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dx = loc1.X ' dx will be set to 10
loc1.X -= 2 ' loc1's X value will now be 8

See Also

150

Location Class

Location Class | location_object.Y | location_object.Z | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

151

GPL Dictionary Pages

locatio

n_object.XYZ Method

Changes all six components of the PosWrtRef value of a Cartesian Location Object to
a specified set of values.

location_object.XYZ(x,y,z,yaw,pitch.roll)

Prerequi

Parame

An optional n ssion that specifies the X-axis displacement. If

An optional numeric expression that specifies the Y-axis displacement. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Z-axis displacement. If
this value is not specified, a default value of 0 is assumed.

yaw

An optional numeric expression that specifies the Yaw angle rotation. If
this value is not specified, a default value of 0 is assumed.

pitch

An optional numeric expression that specifies the Pitch angle rotation. If
this value is not specified, a default value of 0 is assumed.

roll

An optional numeric expression that specifies the Roll angle rotation. If
this value is not specified, a default value of 0 is assumed.

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the 3
positional degrees-of-freedom and the 3 rotational degrees-of-freedom needed to fully
specify a robot or part position and orientation in Cartesian coordinates. This internal

sites

None

ters

x

umeric expre
 is not specified, a default value of 0 is assumed. this value

y

z

152

Location Class

representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data

ntered as X, Y, and Z position displacement
es. The three Euler angles consist of a rotation about

,

artesian components of the location_object’s PosWrtRef
value in a single operation. Any unspecified values are set to 0. This operation is much

ent than using the X, Y, Z, Yaw, Pitch, and Roll properties to individually set
mponent values.

ation_object, at the
conclusion of this operation, the Type will be set to indicate it is a Cartesian Location

ect.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim dy As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dy = loc1.Y ' dy will be set to 20

c1.Y += 7 ' loc1's Y value will now be 27

See Also

Location Class

entry, transformation values are e
components and three Euler angl
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw
Pitch, and Roll.

The XYZ method sets all six C

more effici
the co

As a convenience, independent of the initial Type of the loc

Obj

lo

 | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
location_object.Pitch | location_object.Roll | location_object.XYZInc | Location.XYZValue

153

GPL Dictionary Pages

location_object.XYZInc Method

s.
Increments the X/Y/Z components of the PosWrtRef value of a Cartesian Location
Object by specified amount

location_object.XYZInc(x,y,z)

Prerequisites

The location_object must be a Cartesian Location Object.

 value of 0 is
assumed.

y

y which the Y
value is incremented. If this value is not specified, a default value of 0 is
assumed.

z

An optional numeric expression that specifies the amount by which the Z
value is incremented. If this value is not specified, a default value of 0 is
assumed.

Remarks

ethod increments the X, Y, and Z Cartesian displacement components of the
location_object’s PosWrtRef value in a single operation. Any unspecified increments
leave th

Examples

Dim loc1
loc1.XY
loc1.XY

Locatio

Parameters

x

An optional numeric expression that specifies the amount by which the X
value is incremented. If this value is not specified, a default

An optional numeric expression that specifies the amount b

This m

e corresponding displacement values unchanged.

As New Location ' Create new Location set to default values

Z(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
ZInc(-3,,2) ' Changes X to 7 and Z to 32

See Also

n Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
Location.XYZValue

154

Location Class

Location.XYZValue Method

Y, Z, Yaw,
Pitch, and Roll coordinates.
Returns a Cartesian Location with a "total position" equal to specified X,

...Location.XYZValue(x,y,z,yaw,pitch.roll)

Prerequi

Parameters

x

lacement. If

pression that specifies the Y-axis displacement. If
this value is not specified, a default value of 0 is assumed.

z

An optional numeric expression that specifies the Z-axis displacement. If
this value is not specified, a default value of 0 is assumed.

yaw

An optional numeric expression that specifies the Yaw angle rotation. If
this value is not specified, a default value of 0 is assumed.

pitch

An optional numeric expression that specifies the Pitch angle rotation. If
this value is not specified, a default value of 0 is assumed.

roll

An optional numeric expression that specifies the Roll angle rotation. If
this value is not specified, a default value of 0 is assumed.

Remarks

The XYZValue method computes and returns a Cartesian Location Object that has a
"total position" value whose displacement and orientation is equivalent to that specified
by the x, y, z, yaw, pitch, and roll arguments. This method is provided as a convenience
for constructing Location expressions.

sites

None

An optional numeric expression that specifies the X-axis disp
this value is not specified, a default value of 0 is assumed.

y

An optional numeric ex

155

GPL Dictionary Pages

If you wish to set the PosWrtRef value of a Cartesian Location Object equal to a set of
displacement and orientation values, it is more efficient to utilize the XYZ method instead
of XYZValue.

The following table describes the data returned in the Location Object.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to the displacement and orientation defined by x, y, z,
yaw, pitch, and roll arguments.

RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

c1 As Location ' Locations default to Cartesian
osWrtRef = Location.XYZValue(10,20,30,0,180,25)

 ' Equivalent to "loc1.XYZ(10,20,30,0,180,25)"

See Also

Locatio

Dim lo
loc1.P

n Class | location_object.XYZ

156

Location Class

location_object.Y Property

Sets and gets the displacement along the Y-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Y = <new_value>
-or-
...location_object.Y

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim dy As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dy = loc1.Y ' dy will be set to 20
loc1.Y += 7 ' loc1's Y value will now be 27

See Also

157

GPL Dictionary Pages

Location Class | location_object.X | location_object.Z | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

158

Location Class

location_object.Yaw Property

Sets and gets the Yaw angle, in units of degrees, for the PosWrtRef value of a Cartesian
Location Object.

location_object.Yaw = <new_value>
-or-
...location_object.Yaw

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim ang As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will now be 30 deg.

See Also

159

GPL Dictionary Pages

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Pitch |
location_object.Roll | location_object.XYZ

160

Location Class

location_object.Z Property

Sets and gets the displacement along the Z-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Z = <new_value>
-or-
...location_object.Z

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim dz As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dz = loc1.z ' dz will be set to 30
loc1.z += 7 ' loc1's Z value will now be 37

161

GPL Dictionary Pages

See Also

Location Class | location_object.X | location_object.Y | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

162

Location Class

locatio ty n_object.ZClearance Proper

Sets and gets the distance in millimeters along a Z-axis that defines the safe approach
position to a Location Object.

location_object.ZClearance = <new_value>
-or-
...location_object.ZClearance

Prerequ

one

None

Remarks

For most applications, it is not possible for the robot to move a part directly to its final
destination. Normally, the destination must be approached from an intermediate position
that allows the robot and part to avoid obstacles. Likewise, after picking up a part, it is
typically required that the part be retracted a small distance to avoid dragging the part
across the mating surface. To implement these motions to and from a final destination,
GPL includes a Move.Approach method. Instead of moving to the “total position” of the
location_object, this method moves the robot to a clearance position that is relative to the
location_object.

To simplify the specification of the “approach” or “clearance” position, each
location_object includes a ZClearance distance. This specifies the distance along a Z-
axis for the approach position.

If the ZWorld property of the location_object is True, the clearance position is interpreted
as being directly above (or below) the “total position” of the location_object in the world
coordinate system at the Z value specified by ZClearance. For example, if the “total
position” of the location_object is at an X, Y, Z value of (10,20,30) and ZClearance is
52.3 and ZWorld is True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of the location_object is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of the location_object is at an X, Y, Z
value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is
pointed along the positive world X-axis, the approach position would be (-42.3,20,30).

isites

N

Parameters

163

GPL Dictionary Pages

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always want to retract the gripper a fixed distance from each machine
before moving to the next Location.

Examples

 ' Create new Location set to default values
loc1.XYZ(10,20,30,0,180,0) ' Define destination
loc1.ZWorld = True ' Normally defaults to False

Clearance = 52.3
pproach (loc1, prof1) ' Use global Profile to move to (10,20,52.3)

See Als

ss

By making use of GPL’s robot kinematics option, Cartesian approach specifications can
be automatically applied to both Cartesian and Angles location_objects.

Dim loc1 As New Location

loc1.Z
Move.A

o

Location Cla | location_object.ZWorld | Move.Approach

164

Location Class

locatio

n_object.ZWorld Property

Sets and gets the Boolean flag that indicates if the ZClearance distance is interpreted as
being along the world or tool Z-axis of a Location Object.

location_object.ZWorld = <new_Boolean_value>
-or-
...location_object.ZWorld

Prerequ

one

None

Remarks

For most applications, it is not possible for the robot to move a part directly to its final
destination. Normally, the destination must be approached from an intermediate position
that allows the robot and part to avoid obstacles. Likewise, after picking up a part, it is
typically required that the part be retracted a small distance to avoid dragging the part
across the mating surface. To implement these motions to and from a final destination,
GPL includes a Move.Approach method. Instead of moving to the “total position” of the
location_object, this method moves the robot to a clearance position that is relative to the
location_object.

To simplify the specification of the “approach” or “clearance” position, each
location_object includes a ZClearance distance. This specifies the distance along a Z-
axis for the approach position.

If the ZWorld property of the location_object is True, the clearance position is interpreted
as being directly above (or below) the “total position” of the location_object in the world
coordinate system at the Z value specified by ZClearance. For example, if the “total
position” of the location_object is at an X, Y, Z value of (10,20,30) and ZClearance is
52.3 and ZWorld is True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of the location_object is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of the location_object is at an X, Y, Z
value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is
pointed along the positive world X-axis, the approach position would be (-42.3,20,30).

isites

N

Parameters

165

GPL Dictionary Pages

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always want to retract the gripper a fixed distance from each machine
before moving to the next Location.

bot kinematics option, Cartesian approach specifications can

Exampl

' Create new Location set to defaults

See Als

Locatio

By making use of GPL’s ro
be automatically applied to both Cartesian and Angles location_objects.

es

Dim loc1 As New Location
loc1.XYZ(10,20,30,0,180,0) ' Define destination
loc1.ZWorld = True ' Normally defaults to False
loc1.ZClearance = 52.3
Move.Approach (loc1, prof1) ' Use global Profile, move to (10,20,52.3)

o

n Class | location_object.ZClearance | Move.Approach

166

Math Class
Math Class Summary

The following sections present detailed information on the standard arithmetic and
gonometric operations that are built into GPL. As a convenience during editing, all of
ese operations are provided as methods to the Math Class. This allows programmers

to display a pick list of the Math methods and easily see all of operations that are
available.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not necessary
to have different variations on these methods to deal with the different possible mixes of
input parameter data types. Also, these methods generally produce results that are
formatted as Double’s. These results will automatically be converted to smaller data
types as necessary, e.g. Double -> Integer, and will not generate an error so long as
numeric overflow does not occur.

The table below briefly summarizes the methods that are described in greater detail in
the following sections.

tri
th

Method Description

Math.Abs (expression) Returns the absolute value of any arithmetic expression.

Math.Acos (cosine) Returns the angle that corresponds to a specified cosine
value.

Math.Asin (sine) Returns the angle that corresponds to a specified sine
value.

Math.Atan (tangent) Returns the angle that corresponds to a specified tangent
value.

Math.Atan2 (sine_factor,
cosine_factor)

Returns the angle that corresponds to the quotient of two
values.

Math.Ceiling (value) Returns the smallest integer number that is greater than
or equal to a value.

Math.Cos (angle) Returns the cosine of a specified angle.
Math.Cosh (angle) Returns the hyperbolic cosine of a specified angle.
Math.E Returns the natural logarithmic base constant.

Math.Exp (exponent) Returns the natural logarithmic constant, e, raised to a
specified power.

Math.Floor (value) Returns the largest integer number that is less than or
equal to a value.

Math.Log (value) Returns the natural logarithm (base-e logarithm) of a
specified value.

Math.Log10 (value) Returns the base-10 logarithm of a specified value.
Math.Max (value_1, value_2) Returns the larger of two values.
Math.Min (value_1, value_2) Returns the smaller of two values.
Math.PI Returns the constant π.

Math.Pow (base, exponent) Returns a specified base value raised to a specified
power.

Math.Sign (value) Returns a number that indicates the sign of a specified
value.

167

GPL Dictionary Pages

Math.Sin (angle) Returns the sine of a specified angle.
Math.Sinh (angle) Returns the hyperbolic sine of a specified angle.
Math.Sqrt (value) Returns the square root of a value.
Math.Tan (angle) Returns the tangent of a specified angle.
Math.Tanh (angle) Returns the hyperbolic tangent of a specified angle.

168

Math Class

Math.Abs Method

Returns the absolute value of any arithmetic expression.

...Math.Abs(expression)

Prerequisites

None

Parameters

sion

If the expression value is negative, it is negated and returned as a positive value.

Exampl

Dim value As Single

value = Math.Abs(3) ' Sets value to 3

See Also

Math C

expres

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the absolute value (i.e. the magnitude) of any numerical expression. That is, if
the expression has a value greater than or equal to zero, its value is returned unchanged.

es

value = Math.Abs(-1.23) ' Sets value to 1.23
value = Math.Abs(0) ' Sets value to 0

lass

169

GPL Dictionary Pages

Math.Acos Method

Returns the angle that corresponds to a specified cosine value

...Math.Acos(cosine)

Prerequisites

None

Parameters

cosine

e <= 1.

e
of B.

ed

To convert radians to degrees, multiply the radians times 180/π. }

Examples

Dim angle As Single

 ' Sets angle to Pi

s

See Also

Math Class

A required expression that evaluates to the cosine of an angle. This
value must be in the range –1 <= cosin

Remarks

Returns the angle, in radians, that corresponds to a specified cosine value. That is, if th
cosine of an angle A is B, then this arc cosine function returns A when given a value

Since the cosine function generates the same value for both positive and negative
angles, the Math.Acos method returns a value between 0 and π for any valid input
expression. If the full range of angles is required, the Math.Atan2 method should be us
whenever possible.

angle = Math.Acos(-1)
angle = Math.Acos(Math.Sqrt(2)/2) ' Sets angle to Pi/4

anangle = Math.Acos(Math.Cos(-.5)) ' Sets angle to 0.5 radi

 | Math.Atan2

170

Math Class

Math.Asin Method

Returns the angle that corresponds to a specified sine value.

...Math.Asin(sine)

Prerequisites

None

 value
must be in the range –1 <= sine <= 1.

Remarks

e of an angle A is B, then this arc sine function returns A when given a value of B.

s from

Examples

Dim angle As Single

/2
4

angle = Math.Asin(Math.Sin(Math.PI-.5)) ' Sets angle to 0.5 radians

See Also

Math C

Parameters

sine

A required expression that evaluates to the sine of an angle. This

Returns the angle, in radians, that corresponds to a specified sine value. That is, if the
sin

Since the sine function repeats the same series of answers when an angle traverse
π/2 to 0 to –π/2 as when an angle moves from π/2 to –π to –π/2, the Math.Asin function
cannot distinguish these two cases and always returns values that range from π/2 to -
π/2. If the full range of angles is required, the Math.Atan2 method should be used
whenever possible.

To convert radians to degrees, multiply the radians times 180/π.

angle = Math.Asin(-1) ' Sets angle to –Pi
angle = Math.Asin(Math.Sqrt(2)/2) ' Sets angle to Pi/

lass | Math.Atan2

171

GPL Dictionary Pages

Math.Atan Method

Returns the angle that corresponds to a specified tangent value.

...Math.Atan(tangent)

Prerequisites

None

Parameters

Remarks

Returns the angle, in radians, that corresponds to a specified tangent value. That is, if the
tangent of an angle A is B, then this arc tangent function returns A when given a value of
B.

ince the tangent function repeats the same series of answers over two ranges of
angles: when an angle traverses from 0 to π/2 as when an angle moves from -π to –π/2

 -π

To deal with both of these problems, the Math.Atan2 method should be used whenever
possible.

To convert radians to degrees, multiply the radians times 180/π.

Exampl

 angle As Single
Math.Atan(1) ' Sets angle to Pi/4
Math.Atan(0) ' Sets angle to 0

See Als

Math Class | Math.Atan2

tangent

A required expression that evaluates to the tangent of an angle.

S

and then again when an angle traverses from 0 to -π/2 as when an angle moves from
to π/2, the Math.Atan function cannot distinguish these cases and always returns values
that range from π/2 to -π/2.

In addition, as the angle gets close to π/2 or -π/2, the input parameter for this method
must approach positive or negative infinity.

es

Dim
angle =
angle =
angle = Math.Atan(Math.Tan(-3*Math.PI/4)) ' Sets angle to Pi/4

o

 Method

172

Math Class

Math.Atan2 Method

Returns the angle that corresponds to the quotient of two values.

...Math.Atan2(sine_factor, cosine_factor)

Prerequisites

None

Parameters

actor

o

osine_factor

A required expression, which when divided into sine_factor, is equal to
the tangent of the angle.

dians, that corresponds to the tangent value computed from
r/cosine_factor and using the signs of sine_factor and cosine_factor to uniquely

As a simplified example, if A is the sine of an angle C and B is the cosine of the angle,
en this arc tangent function returns C when given the values A and B.

Unlike the Math.Atan method, this method can return the full range of angles from +π to
–π. In addition, it does not suffer from requiring infinite valued parameters in order to
represent any angular value. So, Math.Atan2 should be used whenever possible instead
of Math.Atan.

To convert radians to degrees, multiply the radians times 180/π.

Examples

Dim angle As Single
angle = Math.Atan2(1,0) ' Sets angle to Pi/2
angle = Math.Atan2(.5,-.5) ' Sets angle to 3*Pi/4
angle = Math.Atan2(-.707,.707) ' Sets angle to -Pi/4

See Also

Math Class

sine_f

A required expression, which when divided by cosine_factor, is equal t
the tangent of the angle.

c

Remarks

Returns the angle, in ra
sine_facto
determine the quadrant of the angle.

th

173

GPL Dictionary Pages

Math.Ceiling Method

 is greater than or equal to a value. Returns the smallest integer number that

...Math.Ceiling (value)

Prerequisites

None

Parameters

Remarks

Returns the smallest integer number that is greater than or equal to the value. This is
sometimes referred to as rounding towards positive infinity.

Examples

 bigger As Single
ger = Math.Ceiling(10.9999) ' Sets bigger equal to 11

bigger = Math.Ceiling(11) ' Sets bigger equal to 11
ger = Math.Ceiling

See Als

Math Class

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Dim
big

big (11.0001) ' Sets bigger equal to 12

o

174

Math Class

Math.Cos Method

Returns the cosine of a specified angle.

...Math.Cos(angle)

Prerequisites

None

of this method
ranges from –1 to +1.

To convert degrees to radians, multiply the degrees times π/180.

Examples

Dim cos_val As Single
cos_val = Math.Cos(0) ' Sets cos_val to 1
cos_val = Math.Cos(21*Math.PI) ' Sets cos_val to -1
cos_val = Math.Cos(45*Math.PI/180) ' Sets cos_val to 0.7071

See Also

Math Class

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the cosine of the angle that is specified in radians. The result

175

GPL Dictionary Pages

Math.Cosh Method

perbolic cosine of a specified angle. Returns the hy

...Math.Cosh(angle)

Prerequi

Parame

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the hyperbolic cosine of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times π/180.

See Als

ss

sites

None

ters

angle

o

Math Cla

176

Math Class

Math.E Method

ithmic base constant. Returns the natural logar

...Math.E

Prerequ

e

Parame

None

Remarks

Returns the constant that is the base value for the natural logarithmic functions,

Examples

Dim value As Single

.E, 2)

See Als

ss

isites

Non

ters

2.7182818284590452354

value = Math.Pow(Math

o

Math Cla

177

GPL Dictionary Pages

Math.Exp Method

Returns the natural logarithmic constant, e, raised to a specified power.

...Math.Exp(exponent)

Prerequisites

None

Parameters

exponent

ent

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the value of the natural logarithmic constant, Math.E, raised to the expon
power (i.e. Math.E^exponent).

Examples

Dim e_val As Single
e_val = Math.Exp(2) ' Sets e_val to 7.3891
e_val = Math.Exp(-2.2) ' Sets e_val to 0.1108
e_val = Math.Exp(Math.Log(17.1))' Sets e_val to 17.1

See Also

Math Class

178

Math Class

Math.Floor Method

. Returns the largest integer number that is less than or equal to a value

...Math.Floor (value)

Prerequisites

None

ding towards negative infinity.

smaller = Math.Floor(11.0001) ' Sets smaller equal to 11

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the largest integer number that is less than or equal to the value. This is
sometimes referred to as roun

Examples

Dim smaller As Single
smaller = Math.Floor(10.9999) ' Sets smaller equal to 10

 smaller = Math.Floor(11) ' Sets smaller equal to 11

See Also

Math Class

179

GPL Dictionary Pages

Math.Log Method

Returns the natural logarithm (base-e logarithm) of a specified value.

...Math.Log(value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the exponent to which the natural logarithmic constant, Math.E, must be raised
in order to produce the value.

Examples

Dim ln_exp As Single
ln_exp = Math.Log(10) ' Sets ln_exp to 2.3026
ln_exp = Math.Log(Math.E) ' Sets ln_exp to 1
ln_exp = Math.Log(Math.Exp(3.4)) ' Sets ln_exp to 3.4

See Also

Math Class

180

Math Class

Math.Log10 Method

a specified value. Returns the base-10 logarithm of

...Math.Log10(value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remark

Returns ce the
value.

Examples

Math.Log10(10) ' Sets l_exp to 1
xp = Math.Log10(0.01) ' Sets l_exp to -2

l_exp = Math.Log10(Math.Pow(10,3.4)) ' Sets l_exp to 3.4

See Als

Math C

s

 the exponent to which the number 10 must be raised in order to produ

Dim l_exp As Single
l_exp =
l_e

o

lass

181

GPL Dictionary Pages

Math.Max Method

Returns the larger of two values.

...Math.Max(value_1, value_2)

Prerequisites

None

bigger = Math.Max

Parameters

value_1

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

value_2

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the larger of two numerical values, value_1 or value_2.

Examples

Dim bigger As Single

(-5, -4.9) ' Sets bigger to –4.9
bigger = Math.Max(-20/-4, 3) ' Sets bigger to 5
bigger = Math.Max(Math.Min(100, 33), 55) ' Sets bigger to 55

See Also

Math Class

182

Math Class

Math.Min Method

 values. Returns the smaller of two

...Math.Min(value_1, value_2)

Prerequisites

1

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

value_2

A required expression that evaluates to any numerical data type, e.g.
.

Remark

eturns the smaller of two numerical values, value_1 or value_2.

Dim smaller As Single
smaller = Math.Min(-5, -4.9) ' Sets smaller to –5
smaller = Math.Min(-20/-4, 3) ' Sets smaller to 3
smaller = Math.Min(Math.Max(100, 33), 55)' Sets smaller to 55

See Also

Math Class

None

Parameters

value_

Integer, Single, Double

s

R

Examples

183

GPL Dictionary Pages

Math.PI Method

Returns the constant π.

...Math.PI

Prerequisites

None

Parameters

None

Remarks

Returns the value of π, 3.14159265358979323846.

Examples

Dim to_
to_deg = 180/Math.PI ' Conversion factor from radians to degrees
to_rad = Math.PI/180 ' Conversion factor from degrees to radians

See Als

Math C

deg, to_rad As Double

o

lass

184

Math Class

Math.Pow Method

Returns a specified base value raised to a specified power.

...Math.Pow(base, exponent)

Prerequi

Parame

e

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

exponen

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

turns the value of base raised to the exponent power (i.e. base^exponent). The base
cannot be negative if the exponent is a fractional value. Also, the base cannot be zero if

exponent r equal to zero.

Exampl

m p_val As Single
p_val = Math.Pow(2, 3) ' Sets p_val to 8

l = Math.Pow(3, -2.2) ' Sets p_val to 0.08919
Math.Pow(Math.E, Math.Log(17.1))' Sets p_val to 17.1

See Also

Math Class

sites

None

ters

bas

t

Re

the is less than o

es

Di

p_va
p_val =

185

GPL Dictionary Pages

Math.S

hat indicates the sign of a specified value.

ign Method

Returns a number t

...Math.Sign (value)

Prerequ

e

Parame

value

ired expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

 the value is greater than zero, 0 if the value is equal to zero, otherwise –

As Single, As Integer
n equal to 1.0
sign equal to –1

See Als

s

isites

Non

ters

A requ

Returns a 1.0 if
1.0 to indicate that the value is negative.

Examples

Dim v_sign int_v_sign
v_sign = Math.Sign(-21.2/(-2.3)) ' Sets v_sig
int_v_sign = Math.Sign(-7.2) ' Sets int_v_

o

Math Clas

186

Math Class

Math.Sin Method

Returns the sine of a specified angle

...Math.Sin(angle)

Prerequisites

None

of this method ranges
from –1 to +1.

Examples

Dim sin_val As Single
sin_val = Math.Sin(-Math.PI/2) ' Sets sin_val to -1
sin_val = Math.Sin(20.5*Math.PI) ' Sets sin_val to 1
sin_val = Math.Sin(45*Math.PI/180) ' Sets sin_val to 0.7071

See Also

Math Class

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the sine of the angle that is specified in radians. The result

To convert degrees to radians, multiply the degrees times π/180.

187

GPL Dictionary Pages

Math.Sinh Method

Returns the hyperbolic sine of a specified angle.

...Math.Sinh(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. Th
angle is not limited to valu

is
es between -π and +π and can be arbitrarily

large.

Remarks

Returns the hyperbolic sine of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times π/180.

See Als

Math Class

o

188

Math Class

Math.Sqrt Method

Returns the square root of a value.

...Math.Sqrt (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the square root of any positive number as a double precision value.

Examples

Math.Sqrt(1.69) ' Sets int_root equal to 1

See Also

Math C

Dim root As Single, int_root As Integer
root = Math.Sqrt(1.44) ' Sets root equal to 1.2
int_root =

lass

189

GPL Dictionary Pages

Math.Tan Method

Returns the tangent of a specified angle.

...Math.Tan(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the tangent of the angle that is specified in radians. Since the returned value will
be extremely large as the angle approaches π/2 or -π/2, it is normally desirable to use

o convert degrees to radians, multiply the degrees times π/180.

Examples

Dim tan_val As Single
tan_val = Math.Tan(0) ' Sets tan_val to 0
tan_val = Math.Tan(Math.PI/4) ' Sets tan_val to 1
tan_val = Math.Tan(-45*Math.PI/180)' Sets tan_val to -1

See Also

Math Class

the Math.Sin and Math.Cos methods in place of this operation.

T

190

Math Class

Math.Tanh Method

Returns the hyperbolic tangent of a specified angle.

...Math.Tanh(angle)

Prerequi

Parame

angle

ired expression that evalu le in units of radians. This
s not limited to values betw nd +π and can be arbitrarily

large.

Remark

the ang spe

ly th s tim

See Also

Math C

sites

None

ters

A requ
angle i

ates to an ang
een -π a

s

Returns the hyperbolic tangent of le that is cified in radians.

To convert degrees to radians, multip e degree es π/180.

lass

191

Modbus Class

CP slave devices
connected to the local Ethernet network. MODBUS/T en" de facto standard
protocol that is widely used in the industrial manufacturing environment to communicate

ices. It has been implemented by hundreds of vendors on
thousands of different products to communicate digital and analog I/O and register data
between devices.

bles below briefly summarize the properties and methods for this Class, which are
greater detail in the following sections.

Modbus Class Summary

The Modbus Class in GPL supports master access to MODBUS/T
CP is an "op

between intelligent dev

The ta
described in

Modbus Class Member Type Description

New Modbus Constructor
Method

Creates an object for a MODBUS
connection and specifies the IP
address.

modbus_obj.Close Method with this object.
Closes any connections associated

modbus_obj.ReadCoils Method Reads one or more outputs.
modbus_obj.ReadDeviceId Method Reads the device ID strings.
modbus_obj.ReadDiscreteInputs Method Reads one or more inputs.

modbus_obj.ReadHoldingRegisters Method Reads one or more holding
registers.

modbus_obj.ReadInputRegisters Method Reads one or more input registers.

m objodbus_ .Timeout Get/Set
Property

Gets or sets the timeout, in
milliseconds, that this connection
will wait for a reply before throwing
an exception.

modbus_obj.WriteMultipleCoils Method Writes multiple outputs.
modbus_obj.WriteMultipleRegisters Method Writes multiple holding registers.
modbus_obj.WriteSingleCoil Method Writes a single output.
modbus_obj.WriteSingleRegister Method Writes a single holding register.

192

Modbus Class

modbus_object.Close Method

 the network connection associated with a Modbus object. Closes

modbus_object.Close

Prerequisites

None

Remarks

The Close method may be used to close the network connection and free up resources.

If no Modbus

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb
 …
mb.Clos

Modbus Class

Parameters

None

connection is active, no error occurs.

As New Modbus(ep)

e()

See Also

193

GPL Dictionary Pages

modbus_object.ReadCoils Method

Reads one or more outputs from a MODBUS slave and returns the values in a Boolean
array.

modbus_object.ReadCoils(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first coil to
be read.

mber

A required Integer expression that defines the number of coils to be
read.

value_array

oolean array that receives the output values. The length of
the array is changed to reflect the number of values read.

Remarks

This method i sues a MOD s request (function 1).

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Exampl

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)

Modbus Class

nu

A required B

s BUS/TCP Read Coil

es

Dim bool() As Boolean
mb.ReadCoils(1, 16, bool) ' Read 16 outputs

See Also

 | modbus_object.WriteMultipleCoils | modbus_object.WriteSingleCoil

194

Modbus Class

modbus_object.ReadDeviceID Method

Reads device identification information from a MODBUS slave and returns as a String
value.

... modbus_object.ReadDeviceId(object_id)

Prerequisites

None

Parameters

object_id

A required Integer expression that evaluates to a number from 0 to 255
that selects the identification information to be returned.

Remarks

This method issues a MODBUS Read Device Identification request (MEI-type 13) using
the Encapsulated Interface Transport (function 43) to retrieve identification information
from the slave. The Read Device ID code is always set to 1.

The object_id parameter selects the identification information to be returned. Some
standard values are:

Object ID Description

0 Vendor name
1 Product code
2 Major and Minor Revision

Consult the MODBUS/TCP standard for the meaning of other object_id values.

Not all MODBUS devices support this function. The String value returned by this method
depends on the particular device being referenced. Consult the manual for your
MODBUS slave device for details.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim id As String
id = mb.ReadDeviceId(0) ' Read vendor name

195

GPL Dictionary Pages

See Also

Modbus Class

196

Modbus Class

modbus_object.ReadDiscreteInputs Method

Reads one or more inputs from a MODBUS slave and returns the values in a Boolean
array.

modbus_object.ReadDiscreteInputs(start, number, value_array)

Prerequisites

A required Integer expression that specifies the number of the first input
to be read.

A required Boolean array that receives the input values. The length of
the array is changed to reflect the number of values read.

If any network errors occur, this method throws an exception.

Exampl

 ep As New IPEndPoint("192.168.0.150")
 mb As New Modbus(ep)
 bool() As Boolean

See Als

Modbus Class

None

Parameters

start

number

A required Integer expression that defines the number of inputs to be
read.

value_array

Remarks

This method issues a MODBUS/TCP Read Discrete Inputs request (function 2).

A new connection to the MODBUS slave is made if none currently exists.

es

Dim
Dim
Dim
mb.ReadDiscreteInputs(1, 16, bool) ' Read 16 inputs

o

 | modbus_object.ReadInputRegisters

197

GPL Dictionary Pages

modbus_object.ReadHoldingRegisters Method

Reads one or more holding registers from a MODBUS slave and returns the values in an
Integer array.

modbus_object.ReadHoldingRegisters(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
register to be read.

number

A required Integer expression that defines the number of registers to be
read.

value_array

A required Integer array that receives the register values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Holding Registers request (function 3).

Each holding register contains a 16-bit unsigned integer value, from 0 to 65535.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim regs() As Integer
mb.ReadHoldingRegisters(1, 16, regs) ' Read 16 values

See Also

198

Modbus Class

Modbus Class | modbus_object.ReadInputRegisters| modbus_object.WriteMultipleRegisters |
modbus_object.WriteSingleRegister

199

GPL Dictionary Pages

modbus_object.ReadInputRegisters Method

Reads one or more input registers from a MODBUS slave and returns the values in an
Integer array.

modbus_object.ReadInputRegisters(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
register to be read.

number

A required Integer expression that defines the number of registers to be
read.

value_array

A required Integer array that receives the register values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Input Registers request (function 4).

Each input register contains a 16-bit unsigned integer value, from 0 to 65535.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim regs() As Integer
mb.ReadInputRegisters(1, 16, regs) ' Read 16 values

See Also

200

Modbus Class

Modbus Class | modbus_object.ReadHoldingRegisters| modbus_object.WriteMultipleRegisters |
modbus_object.WriteSingleRegister

201

GPL Dictionary Pages

modbus_object.Timeout Property

that GPL waits for a response from a
MODBUS slave.
Sets or gets the timeout period, in milliseconds,

modbus_object.Timeout = <timeout>
-or-
... modbus_object.Timeout

Prerequisites

None

Parameters

None

Remarks

allows you to set the timeout period for all Modbus methods that perform
US slave.

If this time is exceeded, the method throws an exception. If the timeout period is set to 0,
the timeout is disabled and a request may wait indefinitely.

Each modbus_object has an independent timeout value.

Examples

mb.Timeout = 2000 ' Timeout in 2 seconds

Modbus

The property
I/O with the MODB

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)

See Also

 Class

202

Modbus Class

modbus_object.WriteMultipleCoils Method

Writes one or more outputs to a MODBUS slave.

modbus_object.WriteMultipleCoils(start, value_array)

Prerequ

e

Parame

start

A required Integer expression that specifies the number of the first coil to
ritten.

value_a

A required Boolean array that contains the output values to be written.
The length of the array determines the number of coils written.

Remark

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

m ep As New IPEndPoint("192.168.0.150")

ength is 16
 ' First output set, rest clear

See Als

Class

isites

Non

ters

be w

rray

s

This method issues a MODBUS/TCP Write Multiple Coils request (function 15).

Di
Dim mb As New Modbus(ep)

 ' Array lDim bool(15) As Boolean
 bool(0) = True

mb.WriteMultipleCoils(1, bool) ' Write 16 outputs

o

Modbus | modbus_object.WriteSingleCoil

203

GPL Dictionary Pages

modbus_object.WriteMultipleRegisters Method

o a MODBUS slave. Writes one or more holding register values t

modbus_object.WriteMultipleRegisters(start, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
holding register to be written.

array

mber of registers written.

ion 16).

its of values in
16 bits.

ngth to 8
value(0) = 111 ' First reg is 111, rest are zero

.WriteMultipleRegisters(1, value) ' Write 8 registers

Modbus Class

value_

A required Integer array that contains the register values to be written.
The length of the array determines the nu

Remarks

This method issues a MODBUS/TCP Write Multiple Registers request (funct

The holding registers are 16-bit unsigned integer values. Only the low 16-b
value_array are used. No error is reported if values are too big to fit in

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim value() As Integer
Redim value(7) ' Set array le

mb

See Also

 | modbus_object.WriteSingleRegister

204

Modbus Class

modbus_object.WriteSingleCoil Method

Writes a single output to a MODBUS slave.

modbus_object.WriteSingleCoil(coil, value)

Prerequisites

None

Parameters

coil

A required Integer expression that specifies the number of the coil to be
written.

 considered True.

 methods.

If any network errors occur, this method throws an exception.

Examples

 ep As New IPEndPoint("192.168.0.150")
 mb As New Modbus(ep)

mb.WriteSingleCoil(1, True) ' Turn on coil 1
WriteSingleCoil) ' Turn off coil 2

See Als

Class

value

A required Boolean expression that determines the output to be written.
Any non-zero value is

Remarks

This method issues a MODBUS/TCP Write Single Coil request (function 5).

If more than one coil is to be changed, it is much more efficient to use the
WriteMultipleCoils method than multiple WriteSingleCoil

A new connection to the MODBUS slave is made if none currently exists.

Dim
Dim

mb. (2, False

o

Modbus | modbus_object.WriteMultipleCoils

205

GPL Dictionary Pages

modbus_object.WriteSingleRegister Method

Writes a single holding register value to a MODBUS slave.

modbus_object.WriteSingleRegister(register, value)

Prerequi

Parame

value

ger expression that determines the output to be written to
the holding register.

Remarks

 a MODBUS/TCP Write).

rs are 16-bit un ed in f value are
r is reported if v o big

one register is to ed, i
eRegisters method than multip thods.

ction to the MODBUS slave is

If any network errors occur, this method thro

Examples

New IPEndPoint("1 150")

(ep)
(1, 123)

See Also

Modbus Class

sites

None

ters

register

A required Integer expression that specifies the number of the holding
register to be written.

A required Inte

This method issues Single Register request (function 6

The holding registe sign teger values. Only the low 16-bits o
used. No erro alue is to to fit in 16 bits.

If more than
WriteMultipl

 be chang t is much more efficient to use the
le WriteSingleRegister me

A new conne made if none currently exists.

ws an exception.

Dim ep As
Dim mb As New Modbus

92.168.0.

mb.WriteSingleRegister

 | modbus_object.WriteMultipleRegisters

206

Move
Move Class Summary

s provide detailed inform Class.
e mean ing m

The GPL system supports position, velocity,
on tions a

motion destination and a motion performanc bject
 and Obje
e des eithe

ation tilized
 to fo straig ow fast the

 se ve m
r e etho ing if the robot is

to move directly to a destination, move to th
s destination, or move

The table below briefly summarized the met cribed in greater detail in
s.

 Class

The following page ation on the methods of the Move
This class provides th s for issu otion commands to a robot.

 and torque-controlled motions. In the
, a Move method requires two arguments:
e specification. Typically, a Location O

standard case of position-c trolled mo

specifies the destination
Location can specify th

a Profile
tination in

ct defines the performance parameters. The
r Cartesian or joint coordinates and includes

clearance position inform
specifies the type of path

 that is u
llow, i.e.

 by selected Move methods. The Profile
ht-line or joint interpolated and h

robot is to move.

As an ease-of-use feature,
destination of a motion. Fo

veral Mo
xample, m

ethods are provided for defining the
ds are provided for specify
e clearance position of a destination, move
 a single axis.

hods that are des

relative to the previou

the following section

Member Type Description

Move.Approach Method Moves to the clearance position for a
specified Location.

Move.Arc Method Moves the tool tip of the robot along an arc
path defined by three Locations.

Move.Circle Method Moves the tool tip of the robot around a
complete circle defined by three Locations.

Move.Delay Method Pauses execution of motions for a specified
period of time, in seconds.

Move.Extra Method Moves extra, independent axes during the
next motion to a Cartesian Location.

Move.ForceOverlap Method

Bypasses the system's normal motion
blending features and defines how the
execution of two sequential motions are to be
overlapped. Can also automatically limit the
rounding of corners between sequential
Cartesian motions.

Move.Loc Method Basic instruction to move to a specified
destination Location.

Move.OneAxis Method Convenience method to move a single axis of
a robot.

Move.Rel Method
Moves to a Location that is relative to the
final position and orientation of the previous
motion.

Move.SetJogCommand Method Sets or changes the specific mode, axis and
speed during jog (manual) control mode.

Move.SetRealTimeMod Method Sets the changes in position and orientation

207

GPL Dictionary Pages

for the Real-time Trajectory Modification
mode.

Move.SetSpeeds Method Sets new target speeds and accelerations for
all axes during velocity control mode.

Move.SetTorques Method Sets new target torque output levels for all
motors in torque control mode.

Move.StartJogMode Method mode.
Initiates execution of jog (manual) control

Move.StartRealTimeMod Method
Initiates a trajectory mode that permits a GPL
program to dynamically modify a planned
path while the path is being executed.

Move.StartSpeedDAC Method Starts / stops automatic control of an analog
output based upon a robot's tool tip speed.

Move.StartTorqueCntrl Method Initiate
one or

s execution of torque control mode for
more motors.

Move.StartVelocityCntrl Method Switches
mode in

 all axes of a robot to velocity control
place of position control mode.

Move.StopSpecialModes Method Terminates execution of any active special
trajectory control modes.

Move.Trigger Method

Primes the system to automatically assert a
digital output signal or a thread event at a

g the next or prescribed trigger position durin
current motion.

Move.WaitForEOM Method ntil the
current motion is completed.
Pauses GPL program execution u

208

Move Class

Move.Approach Method

n.
Moves the robot in a position-controlled motion to the clearance position for a specified
Locatio

Move.Approach (location_1, profile_1)

Prerequi

• High power to the robot must be enabled.

Parameters

A required Profile Object or an expression that evaluates to a Profile
Object sian straight-line or joint

Remark

 a coordinated, position-
ontrolled motion to a clearance position for a specified Location.

s being retracted from a
ce position. For example,

when picking up a part, it is often necessary to position the robot’s gripper directly over
the part before moving down to pick it up. Likewise, after gripping a part, it is often
necessary to retract the robot’s end effector and the part in order to clear other parts or to
avoid scrapping the part along it’s supporting surface.

Since this is such a common operation, all Location Objects contain information on their
required clearance position. The Approach method automatically makes use of this
clearance data to compute an intermediate “approach position” that is taken as the
destination for the Approach method’s motion.

Specifically, each Location contains a ZClearance distance and a ZWorld Boolean flag.
The ZClearance property specifies the Z-axis offset distance for the approach position in
millimeters. If the ZWorld property is True, the clearance position is interpreted as being
directly above (or below) the “total position” of the Location in the world coordinate

sites

• The robot must be homed.
• The robot must be Attached by the thread.

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

value. Can specify either Carte
interpolated motions.

s

This method simultaneously moves all of the axes of the robot in
c

In many cases, as the robot moves towards a part position or i
part position, it must first move through an intermediate clearan

209

GPL Dictionary Pages

system at the Z value specified by ZClearance. For example, if the “total position” of a
Location is at an X, Y, Z value of (10,20,30) and ZClearance is 52.3 and ZWorld is

ach position would be (10,20,52.3).

 a box and
 it must

reach.

If the ZWorld property of a Location is False, the clearance position is a relative
ong the negative Z-axis of the robot’s tool. This clearance distance

ponds to having the robot retract an incremental distance along the major axis of
its tool or gri of a Location is at an X, Y, Z value
of (2 is False and the robot’s tool is pointed
alon th would be (-42.3,20,30).

A to Z
machin from each machine
before moving to the next Location.

By making use of GPL’s robot kinematics option, approach specifications can be
lly applied to both Cartesian and Angles Location Objects.

Once th motion
executio ine or joint
interpola otion, can be blended with the previous and the next motions as desired,
and the performance parameters are defined by profile_1 (e.g. Speed, Accel, Decel,

p, DecelRamp, InRange).

Examples

Dim pro ew Profile ' Create new profile initialized to default values
Dim loc1 As New Location ' Create new location value

arance = 10 ' Require 10 mm clearance in Tool
Move.Approach(loc1,prof1) ' Move to clearance position
Move.Lo

See Also

Location Class

True, the appro

A world Z clearance position is often used if the robot is loading or unloading
the robot must clear the edge of the box independent of how far into the box

distance al
corres

pper. For example, if the “total position”
10, 0,30) and ZClearance is 52.3 and ZWorld
g e positive world X-axis, the approach position

ol clearance position is typically utilized if the robot is tending a number of
es and you always wish to retract the gripper a fixed distance

automatica

e Approach method computes the desired motion destination, the
n is identical to the Move.Loc method. The motion can be a Straight-l
ted m

AccelRam

f1 As N

loc1.XYZ(10,20,30,0,180,20) ' Define position to move to
loc1.ZCle

c(loc1, prof1) ' Move to loc1 using prof1

 | Move Class | Move.Loc | Move.Rel | Profile Class

210

Move Class

Move.Arc Method

Moves the robot's tool tip in a circular arc defined by three Location values.

Move.Arc (location_1, location_2, profile_1)

Prerequ

st be Attached by the thread.
• Circular motions can be performed while tracking a conveyor belt but cannot be

Parameters

location

ession that evaluates to a

location

1

A required Profile Object or an expression that evaluates to a Profile
an straight-

motion is always
esian coordinates.

Remark

obot in a coordinated, position
obot's tool tip follows a circular arc path. The arc is
 final position of the previous motion and location_1 and

defined by the Profile
elRamp).

isites

• High power to the robot must be enabled.
• The robot must be homed.
• The robot mu

used to move from a stationary point to a belt or vice versa.

_1

A required Location Object or an expr
Location Object value. Can be either a Cartesian or an Angles type
value.

_2

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_

Object value. The Straight property that specifies a Cartesi
rpolated motion is ignored since the line or a joint inte

performed in Cart

s

This method simultaneously moves all of the axes of a r
controlled motion such that the r
defined by the XYZ values of the
location_2. The performance parameters for the motion are
Object, profile_1 (e.g. Speed, Accel, Decel, AccelRamp, Dec

211

GPL Dictionary Pages

The circular arc begins at the final "total XYZ position" of the previous motion, goes
through the "total" XYZ position of location_1 and terminates at the "total" XYZ position of
location cation_2 are computed as the results
of e lu ve to the “total position” of their
respect specified as an Angles type, its XYZ
position

If profile_1 will bring
robot to a stop at location_2. If this property is negative and the next motion
ement is executed before this motion reaches its destination, GPL will attempt to

 motions together into a “continuous path”. Circular interpolated motions
nded with any of the motion types, i.e. Cartesian straight-line, joint interpolated

or other circular interpolated motions.

If the pr uted, the
Move.A ruction will temporarily suspend execution of its thread. At the conclusion
of the previous motion or as soon as the new Arc motion starts to be blended with the

otion, the thread will automatically continue execution at the next instruction in
the GPL procedure.

The follo

• The circular arc can be defined in any arbitrary orientation and need not lie in an
ardinal plane.

• The XYZ value of location_1 need not be halfway between the starting and
ore

• ethod is
n straight-line motion to location_2.

• When blending two Arc motions, the s-curve AccelRamp and DecelRamp
should be set to 0 and the Accel and Decel properties should be set high to
ensure that the path tracks the circular path as closely as possible.

Examples

Dim p0 As New Location ' Create location objects
Dim p1 As New Location
Dim p2 As New Location
Dim p3 As New Location
Dim p4 As New Location

_2. The "total position" of location_1 and lo
rtRef value relativa ating each Location's PosW

ive reference frames, if any. If a Location is
 is computed using the kinematic model for the attached robot.

 has its InRange property set to zero or a positive value, the system
the
stat
blend the two
can be ble

evious motion is still in process when the Move.Arc instruction is exec
rc inst

previous m

wing are special notes regarding the use of the Arc method.

c

ending positions of the arc although values closer to the mid point will m
accurately define the plane of the arc.
If the three XYZ points that define the arc lie in a straight-line, the Arc m
automatically converted to a Cartesia

• As with straight-line motions, the orientation of the tool of the robot is smoothly
rotated from the final orientation of the previous motion to the orientation of the
final position, location_2. The specific rotation method is a function of the
kinematic module being utilized.

212

Move Class

p0.XYZ(100,200,-100,0,180,0) ' Define two semi-circles
p1.XYZ(200,100,-100,0,180,0) ' that form an "S"
p2.XYZ(300,200,-100,0,180,0)
p3.XYZ(400,300,-100,0,180,0)
p4.XYZ(500,200,-100,0,180,0)

Move.Loc(p0,pf_start) ' Move to start position
Move.Arc(p1,p2,pf_on_path) ' Follow first semi-circle
Move.Arc(p3,p4,pf_on_path) ' Follow second semi-circle
Move.WaitForEOM ' Pause thread until motion done

See Also

Location Class | Move Class | Move.Circle | Move.Loc | Profile Class

213

GPL Dictionary Pages

Move.Circle

Moves the ro .

Method

bot's tool tip in a complete circle defined by three Location values

Move.Circle (location_1, location_2, profile_1)

Prerequisites

• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.
• Circular motions can be performed while tracking a conveyor belt but cannot be

used to move from a stationary point to a belt or vice versa.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

location_2

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. The Straight property that specifies a Cartesian straight-
line or a joint interpolated motion is ignored since the motion is always
performed in Cartesian coordinates.

Remarks

This method simultaneously moves all of the axes of a robot in a coordinated, position
controlled motion such that the robot's tool tip follows an arc path around a complete
circle. The circle is defined by the XYZ values of the final position of the previous motion
and location_1 and location_2. The performance parameters for the motion are defined
by the Profile Object, profile_1 (e.g. Speed, Accel, Decel, AccelRamp, DecelRamp).

214

Move Class

The rc the previous motion, goes through the
"tot X the "total" XYZ position of location_2 and
term a s" of location_1 and location_2 are
computed as the results of evaluating each Location's PosWrtRef value relative to the

l position” of their respective reference frames, if any. If a Location is specified as
an Angles type, its XYZ position is computed using the kinematic model for the attached

If profile ill bring
the robo otion
statement i

nd the two motions together into a “continuous path”. Circular interpolated motions
n be blended with any of the motion types, i.e. Cartesian straight-line, joint interpolated

e

 the

Circle

closer to
120 degrees apart will increase the accuracy of the plane of the circle.

• If the three XYZ points that define the circle lie in a straight-line, the Circle
method motion is automatically converted to a short move to nowhere.

p
ould

 as possible.
• During the circular motion, the orientation of the tool is held constant.

Examples

Dim p0 As New Location ' Create location objects
Dim p1 As New Location
Dim p2 As New Location

p0.XYZ(100,200,-100,0,180,0) ' Center on (200,200), radius 100

 ci le begins at the final "total XYZ position" of
al" YZ position of location_1 and
in tes at the starting position. The "total position

“tota

robot.

_1 has its InRange property set to zero or a positive value, the system w
t to a stop at the final position. If this property is negative and the next m

s executed before this motion reaches its destination, GPL will attempt to
ble
ca
or other circular interpolated motions.

If the previous motion is still in process when the Move.Circle instruction is executed, th
Move.Circle instruction will temporarily suspend execution of its thread. At the
conclusion of the previous motion or as soon as the new Circle motion starts to be
blended with the previous motion, the thread will automatically continue execution at
next instruction in the GPL procedure.

The following are special notes regarding the use of the method.

• The circle can be defined in any arbitrary orientation and need not lie in an
cardinal plane.

• The XYZ values of location_1 and location_2 need not be equal distance
between the starting and ending positions of the circle although values

• When blending a Circle motion with another motion, the s-curve AccelRam
and DecelRamp should be set to 0 and the Accel and Decel properties sh
be set high to ensure that the path tracks the circular path as closely

215

GPL Dictionary Pages

p1.XYZ(200,300,-100,0,180,0)
p2.XYZ(200,100,-100,0,180,0)

p0,pf_start) ' Move to start position
le(p1,p2,pf_on_path) ' Move in a circle

Move.WaitForEOM

See Also

Location Class

Move.Loc(
Move.Circ

 ' Pause thread until motion done

 | Move Class | Move.Arc | Move.Loc | Profile Class

216

Move Class

Move.Delay Method

Pauses execution of a robot’s motions for a specified period of time, in seconds.

Move.Delay (seconds)

Prerequisites

• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.

Parameters

seconds

A required numeric expression that specifies the number of seconds to
delay any further robot motions, interpreted as a Double value.

Remarks

This method delays any further motions for the attached robot for the specified number of
seconds. This delay starts immediately if the robot is not moving or starts at the
completion of any in-process motions if the robot is moving. Unlike other methods that
simply suspend execution of a thread, this delay is synchronized with the movement of
the robot. So, it is very useful of inserting process delays in order to allow other
equipment to complete their operations before the robot moves to its next step. For
example, this method can be used after the robot has come to a complete halt to pick up
a part, to insert a fixed delay to allow the robot’s gripper to close and engage the part.

Another advantage of this method is that it is implemented like a command to “move to
the current position for a fixed amount of time”. This means that as soon as the delay
period begins, execution of the thread continues. This allows the thread to monitor other
activities or plan the next motion. Also, since the Delay method behaves like any other
motion, the Delay can be prematurely terminated by a RapidDecel command.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
Move.Loc(loc1, prof1) ' Move to global loc1
Move.Delay(0.2) ' Delay for .2 seconds after we reach loc1

See Also

Move Class | Move.WaitForEOM

217

GPL Dictionary Pages

Move.Extra Method

Move extra, independent axes during the next motion to a Cartesian Location.

Move.Extra (axis_1_position, axis_2_position)

Prerequi

High power to the robot must be enabled.
• The robot must be Attached by the thread.

Parameters

_1_position

A required numeric expression that specifies the new position of the first
extra axis as an absolute position in units of either millimeters or degrees

axis_2_position

An optional numeric expression that specifies the new position of the

Remarks

Selected kinematic modules include extra, independent axes that are physically part of
nd

oved. So,

To address this need, the method can be executed prior to the execution of

 ignored.

ic Robot Kinematic Module to determine if
this instruction has any affect.

sites

•

axis

as appropriate.

second extra axis as an absolute position in units of either millimeters or
degrees as appropriate.

the robot but that do not logically factor into the calculation of the Cartesian position a
orientation of the robot. For example, the "Dual RPR Robot" and the "XYZ Plus Extra
Axis Robot" both include an extra axis that does not affect the Cartesian location of the
robot.

For these types of robots, if a motion instruction is executed to a Cartesian Location
value, there is no information available to define where the extra axis is to be m
in general, the extra axis will remain in its current position during such a motion.

Move.Extra
a motion to a Cartesian Location. During the motion, any extra axes will be moved to
the positions specified by the Move.Extra method simultaneously with the other axes of
the robot. If the next motion is not to a Cartesian Location, the information specified in
the Move.Extra method is

As an alternative to using the Move.Extra method, a motion specified to an Angles
Location will move all of the axes of the robot including the extra axis. However, in this
case, the benefits of utilizing a Cartesian Location will be lost.

Please see the documentation for your specif

218

Move Class

Exampl

Dim pf1 As New Profile ' Create new profile set to default values
Move.Ex

Move.Lo

See Also

Move Class

es

tra(20,Robot.DestAngles.Angle(6)) ' Move 1st extra axis to 20 next motion
 ' Keep 2nd extra axis at same position
c(Location.XYZValue(300,0,100),pf1) ' Move robot and extra axis

 | Move.Loc | Move.Rel

219

GPL Dictionary Pages

Move.ForceOverlap Method

Bypasses the system's normal motion blending features and defines how the execution
of two sequential motions are to be overlapped. Can also automatically limit the rounding
of corners between sequential Cartesian motions.

Move.ForceOverlap (mode, criterion)

Prerequisites

• High power to the robot must be enabled.
• The robot must be Attached by the thread.

Parameters

Remarks

In most applications, the system automatically attempts to optimize the execution of

they

n significantly improve the
performance of a robot since the time required for accelerating and decelerating

When the system automatically computes the amount by which sequential motions are
blend unt the maximum allowabl celeration of
the robot. This permits the cycle time to be optim g the capabilities
of the mechanical system.

How er, in is
computations by using the Fo two motions are to
be overlapped. This method supports the following different mode's of operations.

mode

A required arithmetic expression that defines how the overlapping is
specified and the criterion is interpreted.

criterion

A required arithmetic expression that defines how much the next motion
is to be overlapped with the currently executing motion. The
interpretation of this parameter is a function of the mode.

sequential motions by blending (overlapping) the deceleration of the previous motion with
the acceleration of the next motion. For example, if a motion in the X direction is split into
two separate motion instructions and the robot is instructed not to stop between the
motions, the system will automatically blend the deceleration of the first segment with the
acceleration of the second segment such that the two motions will appear as though
were a single continuous motion. This blending ca

adversely affects cycle time.

ed, it takes into acco e acceleration and de
ized without exceedin

ev some cases, it desirable to override the system's standard blending
rceOverlap method to define how much

mode = 0: Explicit Overlap Specification

220

Move Class

This mode explicitly defines the amount that two sequential motions are to be
overlapped, specified as the percentage of time of the second motion. This method
the following benefit

has
s as compared to automatic blending:

• Allows all segments of the current motion to be overlapped with the next motion,
not just the current motion's deceleration and the next motion's acceleration
segm rmits a much greater overlapping of the two motions.

e automatic
 first motion
 typically

rbitrarily

his method has the following disadvantages

ents. This pe
• Provides an explicit overlapping specification in cases where th

blending may not result in optimal performance. For example, if the
reis along the X-axis and the next motion is along the Y-axis, they a

dynamically decoupled. In this instance, the two motions can be a
overlapped from 0% to 100% without violating the dynamic limitations of the

y amount in robot. Using mode 0, the amount of overlapping can be set to an
order to satisfy any desired application and cycle time requirements.

 T as compared to automatic blending:

No checking is performed to ensure that the maximum acceleration and
deceleration capabilities of the robot are not exceeded.

• The system's standard blending algorithms automatically reduce the deceleration
of the current motion and the acceleration of the next motion when this will not
adversely affect cycle time to increase the smoothness of the motion transition.

• The ForceOverlap method places more burden on the application programmer
for optimizing the motion cycle time.

The interpretation of the criterion parameter is described in the following table.

•

mode criterion Resulting Overlap

0 % (0-100)

% of the total execution time of the next motion that is to be
overlapped with the currently executing motion. A value of
0 indicates that the two motions are not overlapped. A
value of 100 indicates that all of the next motion is to be
overlapped with the currently executing motion if possible.

The motion overlap generated by this method is subject to the following limitations.

• Since the overlap is with respect to the currently executing motion, the next
motion will never be started prior to the execution of the current motion.

• The overlap is limited to ensure that the next motion never terminates before the
end of the currently executing motion.

• If the current motion is defined to stop, i.e. has a Profile Inrange parameter of 0
or greater than 0, no overlapping will be performed.

The following simplified drawings graphically illustrate how the overlapping is performed.
In the first set of drawings, the current motion is shorter than the next motion. In the
second set of drawings, the current motion is longer than the next motion.

221

GPL Dictionary Pages

Note
exte

 that when the next motion is longer than the current motion, the overlap can be
nded to almost the start of the current motion. If the next motion is shorter than the

started sufficiently after the start of the
ion to ensure that the next motion does not terminate before the current

motion.

By com can be
expecte result of the system's automatic blending algorithm. The automatic
blending is very easy to use and ensures that the robot's dynamic capabilities are not

. However, the overlapping is generally limited to the deceleration segment of
the previous motion and the acceleration segment of the next motion.

current motion, the next motion will always be
current mot

parison, the following picture illustrates the amount of overlapping that
d as a

exceeded

mode = 1: Automatically Limit Rounding of Corners

This mode estimates the distance between the corner of two sequential Cartesian
motions (either straight-line or circular) and the closest point on the blended path. If this
distance
ridden a ce.

This is illustrated in the following drawing. The "Automatic blending" picture shows the
path com a
large de
that is a

 is estimated to exceed a specified limit, the standard motion blending is over-
nd the overlap is set to approximately achieve the specified corner distan

puted by the system to minimize the motion execution time at the expense of
viation from the corner point. The "Force overlapping" picture shows the path
utomatically computed to achieve the specified maximum corner distance.

222

Move Class

If the standard automatic blending algorithms produce a path that has a corner distance
that is approximately equal to or less than the specified corner distance, the path

uted by the standard motion blending algorithms is executed. However, if the
ner rounding is too great, the motion overlap is automatically reduced. The reduced

overlap will decrease the corner rounding and the corner distance and will therefore

cribed in the following

comp
cor

result in an increase in the motion execution time.

For this mode, the interpretation of the criterion parameter is des
table.

mode criterion Resulting Overlap

1 distance in mm and currently executing Cartesian motion is automatically
reduced to approximately achieve a corner distance that
does not exceed the specified criterion.

If required, the overlap between the next Cartesian motion

If the currently executing and the next motions are not Cartesian (e.g. straight-line or
circular) motions, this mode is ignored.

This special mode will produce the most accurate corner distances if the two motions
have relatively small s-curve ramp times and their accelerations, decelerations and
speeds are similar.

Examples

Dim pf1 As New Profile
Robot.Attached = 1 ' Get control of robot #1
pf1.Inrange = -1 ' Don't stop at end of motion
Move.Rel(Location.XYZValue(10), pf1) ' Move 10 mm in X direction
Move.ForceOverlap(0, 50) ' Overlap 50% of the next motion's time
Move.Rel(Location.XYZValue(0,10), pf1) ' Move 10 mm in Y direction
Move.ForceOverlap(1, 1) ' Next corner distance should be <= 1mm
Move.Rel(Location.XYZValue(10), pf1) ' Move 10 mm in X direction
Robot.Attached = 0 ' Release control of robot

See Also

Move Class

223

GPL Dictionary Pages

Move.

in a position-controlled

Loc Method

Basic method for moving the robot to a specified destination
motion.

Move.Loc (location_1, profile_1)

Prerequisite

•
•

Parameters

location_1

A required Location Object or an expression that evaluates to a

Remark

This is t n a
coordina n Object,
location parameters defined by a Profile Object, profile_1 (e.g.
Speed, Accel, Decel, AccelRamp, DecelRamp).

The destination of the motion will be the “total position” defined by location_1. For the
various as
follows:

• If location_1 is a Cartesian Location with a reference frame, the “total position”
is computed as the position and orientation that is a result of evaluating
location_1’s PosWrtRef value relative to the “total position” of the reference

n destination will be
the axes positions specified by location_1.

s

• High power to the robot must be enabled.
The robot must be homed.
The robot must be Attached by the thread.

Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

s

he basic method for simultaneously moving all of the axes of a robot i
ted, position controlled motion to a destination specified by a Locatio

_1, using performance

forms for the Location Object, the motion destination will be computed

frame.
• If location_1 is a Cartesian Location without a reference frame, location_1’s

PosWrtRef value is interpreted as the absolute coordinates for the destination.
• Otherwise, location_1 is an Angles Location and the motio

224

Move Class

If profile_1 specifies a Straight-line motion, the robot will move along a straight path in
Cartesian space. Otherwise, a joint-interpolated motion will be generated. If profile_1 has
its InRange property set to zero or a positive value, the system will bring the robot to a

ted

e
nclusion
e

ically continue execution at the next instruction in
 GPL procedure.

Exampl

m prof1 As New Profile ' Create new profile set to default values
m loc1 As New Location ' Create new location value

loc1.XYZ(10,20,30,0,180,20) ' Define position to move to
 ' Move to loc1 using prof1

See Also

Location Class

stop at location_1. If this property is negative and the next motion statement is execu
before this motion reaches its destination, GPL will attempt to blend the two motions
together into a “continuous path”.

If the previous motion is still in process when the Move.Loc instruction is executed, th
Move.Loc instruction will temporarily suspend execution of its thread. At the co
of the previous motion or as soon as the new motion starts to be blended with th
previous motion, the thread will automat
the

es

Di
Di

Move.Loc(loc1, prof1)

 | Move Class | Move.Approach | Move.Arc | Move.Extra | Move.Rel | Profile Class

225

GPL Dictionary Pages

Move.OneAxis Method

Convenience method to move a single axis of a robot.

Move.OneAxis (axis, axis_position, relative_flag, profile_1)

Prerequisites

• High power to the robot must be enabled.

 by the thread.
 are out-of-range of their software

limit stops so long as the motion moves the axis towards the in-range region.
This method and jog control are the only means for automatically moving axes
that are out-of-range.

Parameters

axis

A required numeric expression that specifies the number of the robot’s
is that is to be moved, 1-n.

axis_po

pression that specifies the new position of the axis
as either an absolute position or a relative position, in units of either
millimeters or degrees as appropriate.

Remark

 by

• The robot must be homed.
• The robot must be Attached
• An axis can be moved even if it or other axes

ax

sition

A required numeric ex

relative_flag

A required numeric expression that is interpreted as a Boolean that
indicates if the axis_position is an absolute axis position (False) or a
relative value (True).

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

s

This method is primarily a convenience and diagnostic function that moves a single axis
of the Attached robot. If the relative_flag is True, the new axis position is computed
adding the axis_position value to the final axis position of the previous motion. Otherwise,
the axis_position is taken as the new absolute position for the axis.

226

Move Class

When this motion is generated, the positions of all of the other axes of the robot remain
unchanged.

Once the OneAxis method computes the desired position for each axis, the m
execution is identical to the Move.Loc

otion
method except that Straight-line motions are not

permitted and this method permits axes to be outside of their software limit stops.

vious and the next motions as desired. The

Exampl

m prof1 As New Profile ' Create new profile set to default values
ve.OneAxis(1,20,True,prof1) ' Increment axis 1 by 20 mm or deg

Move Class

This motion can be blended with the pre
performance parameters are defined by profile_1 (e.g. Speed, Accel, Decel,
AccelRamp, DecelRamp, InRange).

es

Di
Mo

See Also

 | Move.Loc | Move.Rel

227

GPL Dictionary Pages

Move.Rel Method

Moves the robot in a position-controlled motion to a Location that is relative to the final
position and orientation of the previous motion.

Move.Rel (location_1, profile_1)

Prerequisites

• d.

d.

value.

profile_1

Object value. Can specify either Cartesian straight-line or joint

rpolated motions.

Remarks

This me position
controlle ich is
interpre elative to the final position and orientation of the
previous motion. If location_1 is a Cartesian Location, the “total position” of location_1 is

aluated relative to the final Cartesian position and orientation of the previous motion. If
n_1 is a Angles Location, the motion’s destination is computed by adding

d.
-

r the robot actually stopped.

High power to the robot must be enable
• The robot must be homed.
• The robot must be Attached by the threa

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type

A required Profile Object or an expression that evaluates to a Profile

inte

thod simultaneously moves all of the axes of the robot in a coordinated,
d motion to a destination specified by the “total position” of location_1, wh

ted as an incremental change r

ev
locatio
location_1’s set of angles to the final angles of the previous motion.

Note, that this motion is relative to the actual final position and orientation of the previous
motion and not the planned destination of the previous motion (Robot.Dest,
Robot.DestAngles). The planned destination remains the same even if the motion
prematurely terminates execution. This was designed to allow a motion to be retrie
However, the actual final position and orientation is modified by a Soft E-Stop, a Hard E
Stop, a RapidDecel command or other conditions. So, the Rel method is designed to
allow a program to do an incremental motion from whereve

For Cartesian Locations, it should be keep in mind that the incremental motion is
performed in the tool coordinate system of the robot. For example, a positive incremental
Z motion will not necessarily move up vertically in the world coordinate system. It will
move along the Z-axis of the robot’s end effector.

228

Move Class

Once the Rel method computes the desired motion destination, the motion execution is
identical to the Move.Loc method. The motion can be a Straight-line or joint interpolated
motion, can be blended with the previous and the next motions as desired, and the

l, Decel,
AccelRamp DecelRamp InRange

Exa

Dim prof1 As New Profile ' Create new p
Dim loc1 tion l
loc1.XYZ 80, t
Move.Loc to loc1
loc1.XYZ(10) ' Define incremental motion in X
Move.Rel ' Move 10 mm i

See Also

Location Class

performance parameters are defined by profile_1 (e.g. Speed, Acce
, ,).

mples

rofile set to default values
ocation value
ion to move to
 using prof1

 As New Loca
(10,20,30,0,1
(loc1, prof1)

 ' Create new
20) ' Define posi
 ' Move

(loc1, prof1) n Tool X, not World

 | Move Class | Move.Approach | Move.Extra | Move.Loc | Profile Class

229

GPL Dictionary Pages

Move.SetJogCommand Method

Sets or changes the specific mode, axis and speed during jog (manual) control mode.

Move.SetJogComand (jog_mode, jog_axis, jog_speed)

Prerequisites

• High power to the robot must be enabled.
• The robot does not need to be homed.
• The robot must be Attached by the thread.
• The robot must be in jog control mode.

Parameters

jog_mode

A required expression that evaluates to an Integer value. This value
specifies the manual control mode that should now be in effect.

A required expression that eva

jog_axis

luates to an Integer value. This defines
the robot or Cartesian axis that is to be moved under manual control.

is speed and to decelerate to a stop after the
manual motion is completed.

Remarks

After a robot has been placed into jog (manual) control mode, this method must be
executed to define the manual control mode, the axis to be manually controlled and the

mands are posted in the same
ry cycle, the trajectory generator will only use the information from the last

mand posted before the start of the cycle. The trajectory generator automatically
smoothly transitions between modes and target speeds.

in World manual control mode and a new
will
leration up
ing moved

jog_speed

A required expression that evaluates to a percentage value between
+100 and -100. This specifies the target speed and direction for the
manual control motion. The system automatically generates a motion
profile to accelerate up to th

speed at which the axis is to be moved. This method can be executed at any time during
jog control mode and as many times as desired. It simply posts the parameters to the
trajectory generator for execution. If multiple com
trajecto
com

For example, if the robot is being moved
command to move in joint manual mode is received, the trajectory generator
decelerate the World manual mode motion to a stop prior to starting the acce

l mode speed. As another example, if the robot is beto the target joint manua

230

Move Class

in any mode and a new command is posted that changes the target speed, the trajecto
ccelerate or decelerate to achieve the new speed.

ry

re as follows:

generator will smoothly a

The interpretation of the parameters to this method a

Jog_Mode Jog_Axis Jog_Speed Description

0 Ignored. Ignored. Idle, robot not moving.

1 t joint
r, 1-n

Joint speed and
direction.

axis can be
be home

Joint manual control mode. A single robot
moved. The robot does not need to

d. Axes that are out-of-range can be
ange.

Robo
numbe

moved into r
Cartesian axis:

2 1:X, 2:Y, 3:Z,
4:RX, 5:RY,
6:RZ

Cartesian speed
and direction.

World manual control mode. Translates or
rotates along or about a single world (base)
Cartesian coordinate axis. The robot must be
homed.

3 1:X, 2:Y, 3:Z,
4:RX, 5:RY,

Cartesian speed
and direction.

rotates along or about a single tool (g
Cartesian axis:

6:RZ

Tool manual control mode. Translates or
ripper)

Cartesian coordinate axis. The robot must be
homed.

4 Robot joint
number, 1-n

Positive values
free the joint and
negative values
lock the joint.

Free manual control mode. Puts any number
of axes into torque control mode to permit the
axes to be manually pushed into position.

For Joint, World and Tool control modes, if the magnitude of the speed is set to 5% or
less, the robot will move a discrete increment and then stop rather than move
continuously. In order to move an additional small increment, the speed must be set to 0
and then to a value of 5% or less. This is very convenient for fine positioning the robot.

WARNING: Any axis commanded to move at greater than 5%
speed will continue to do so until stopped. It is responsibility of the
GPL Project to have suitable safe guards and time outs to ensure
that a motion is terminated when required.

Examples

Robot.Attached = 1 ' Get control of robot #1
Move.StartJogMode() ' Initiate jog control mode
Move.SetJogCommand(3, 3, 50) ' Set tool mode, Z-axis, 50% speed
Thread.Sleep(4000)
Move.SetJogCommand(2, 1, -50) ' Change to world mode, X-axis, -50% speed
Thread.Sleep(4000)
Move.StopSpecialModes ' Terminate jog mode
Robot.Attached = 0 ' Release control of robot

See Also

Move Class | Move.StartJogMode | Move.StopSpecialModes

231

GPL Dictionary Pages

Move.SetRealTimeMod Method

me Trajectory
Modification mode.
Sets the incremental changes in position and orientation for the Real-ti

Move.SetRealTimeMod (changes_array)

Prerequisites

abled.
 the thread.
y Modification method enabled.

are in

Remarks

After the Real-time Trajectory Modification mode has been enabled, this method must be
execute defined
as singl nges are
interpre
increme

This me posts
the desi generator
execute imes
before t ll have an
effect.

ease see the documentation for the Move.StartRealTimeMod method for a description
of how the incremental changes are interpreted.

Exampl

Robot.Attached = 1
 Move.StartRealTimeMod(1,2) ' Turn on RT correction function

 Move.Loc(p0, pf0)
 Move.Loc(p1, pf0)
 Move.WaitForEOM

• High power to the robot must be en
• The robot must be Selected or Attached by
• The robot must have the Real-time Trajector

Parameters

changes_array

A required array of Doubles that contains 6 incremental change values
corresponding to the 3 position and 3 orientation degrees-of-freedom
(Dx, Dy, Dz, Rx, Ry, Rz). If Move.StartRealTimeMod has specified
single steps, these parameters are in units of mm and degrees. If a
continuous change mode has been specified, these parameters
units of mm/sec and deg/sec.

d to specify the incremental coordinate modifications. If the changes are
e steps, this method must be executed once for each step. If the cha
ted as continuous changes, this method must be execute each time an
ntal speed is to be altered.

thod can be executed at any time and as many times as desired. It simply
red changes to the trajectory generator. Each time that the trajectory
s, it checks for any new posted values. If this method is executed multiple t
he trajectory generator executes again, only the last values posted wi

Pl

es

Public Sub MAIN
 Dim rtmod As New Thread("rtmod")
 rtmod.Start ' Start RT change service thread

232

Move Class

 rtmod.
 Move.StopSpecialModes ' Turn off RT correction function

Abort

 Robot.Attached = 0
End Sub
Public Sub rtmod

 Dim rtm_spd(6) As Double
 While True
 Controller.SleepTick(2) ' Adjust every other traj ti
 If (Signal.DIO(20001)) Then

ck

 rtm_spd(2) = 0 ' Don't move
 End If

 Move.SetRealTimeMod(rtm_spd) ' Set new speed

See Also

Move Class

 rtm_spd(2) = 10 ' +10 mm/sec in Z
 ElseIf (Signal.DIO(20002)) Then
 rtm_spd(2) = -10 ' -10 mm/sec in Z

Else

 End While
End Sub

 | Move.StartRealTimeMod | Move.StopSpecialModes | Robot.CartMode |
Robot.RealTimeModAcm | Thread.Schedule

233

GPL Dictionary Pages

Move.SetSpeeds Method

r all axes of a robot in velocity control mode. Sets new target speeds fo

Move.SetSpeeds (speed_array, profile_1)

Prerequi

High power to the robot must be enabled.
• The robot must be homed.
• .
• ode.

Parameters

eds_array

ired array of Doubles that contains a speed specification for each
axis of the robot. The first array element (0) corresponds to the target

profile_

An optional Profile Object or an expression that evaluates to a Profile
Object value. This value defines the acceleration, deceleration and
acceleration/deceleration ramp times to be use to change the speed of

fter a robot has been placed into velocity control mode, this method can be used to
t any time

sired. It simply posts the desired target speeds to the trajectory
cified speeds will

 before the
ain, only the last values posted will have an effect.

Exampl

sites

•

The robot must be Attached by the thread
The robot must be in velocity control m

spe

A requ

speed for the robot’s first axis. One value must be provided for each axis
of the robot. Each array element is interpreted in units of mm/sec (linear
axes) or deg/sec (rotary axes). These values are limited by the
maximum permitted joint speeds, "100% joint speeds" (DataID 2700) *
"Max %speed allowed" (DataID 2704).

1

each axes. In certain cases, it may not be possible to honor the ramp
times without over-shooting the target velocity, but the acceleration and
deceleration limits are adhered to. For example, this can occur if an axis
is accelerating to a high velocity and suddenly a new, lower velocity
target is specified. If this parameter is not specified, the Profile specified
by the last executed Move.SetSpeeds or Move.StartVelocityCntrl
method will be utilized.

Remarks

A
modify the target speed
and as many times as de

 levels for each axis. This method can be executed a

generator. The next time that the trajectory generator executes, the spe
be taken as the new target values. If this method is executed multiple times
traje eractory gen tor executes ag

es

234

Move Class

Dim speeds(12) As Double ' All Double speeds w
Di

ill be 0

ve.StartVelocityCntrl(0, 0, speeds, pf1) ' Set to velocity control mode
r ii = 36 To 360 Step 36

 speeds(0) = ii ' New speed value
1 speed
tle while

Next ii
Move.StopSpecialModes ' Terminate velocity mode
Robot.Attached = 0 ' Release control of robot

See Also

Move Class

m pf1 As New Profile ' Use default accel/decel
Dim ii As Integer
Robot.Attached = 1 ' Get control of robot #1
Mo
Fo

 Move.SetSpeeds(speeds) ' Ramp axis
 Controller.Sleeptick(30) ' Wait a lit

 | Move.StartVelocityCntrl | Move.StopSpecialModes

235

GPL Dictionary Pages

Move.

tput levels for all motors in torque control mode.

SetTorques Method

Sets new target torque ou

Move.SetTorques (torques_array)

Prerequisites

•
•

High power to the robot must be enabled.
The robot does not need to be homed.

• The robot must be Attached by the thread.
One or more motors of the robot must be operating in torque contr• ol mode.

s_array

A required array of Doubles that contains a torque specification for each
motor of the robot. The first array element (0) corresponds to the torque

Remarks

 executed at any time
and as many times as desired. It simply posts the desired torque levels to the trajectory
generator. The next time that the trajectory generator executes, the specified torque
levels will be tak es
before the trajec ve an
effect.

Examples

 ' Get control of robot #1
(1, 0, torques) ' Set motor 1 to torque mode

 Move.SetTorques(torques) ' Ramp torque from 0% to 10%
 Next ii
Next jj

Parameters

torque

value for the robot’s first motor. Array elements for motors that are not
torque controlled are ignored. Each array element is interpreted as a
percentage, where a value of +100 or –100 indicates that the torque
output should be equivalent to the full positive or negative rated motor
torque. Since the peak motor torque can usually be higher than the rated
torque, values greater than +- 100% are permitted.

After selected motors of a robot have been placed into torque control mode, this method
can be used to modify the target torque levels. This method can be

en as the new target values. If this method is executed multiple tim
tory generator executes again, only the last values posted will ha

Dim torques(12) As Double ' All Double torques will be 0
Dim ii, jj As Integer

Robot.Attached = 1
Move.StartTorqueCntrl
For jj = 1 To 10
 For ii = 0 To 100
 Controller.Sleeptick() ' Wait till next trajectory cycle
 torques(0) = ii/10 ' New torque value

236

Move Class

Move.StopSpecialModes ' Terminate torque mode

Robot.Attached = 0 ' Release control of robot

See Also

Move Class | Move.StartTorqueCntrl | Move.StopSpecialModes

237

GPL Dictionary Pages

Move.StartJogMode Method

Initiates execution of jog (manual) control mode.

Move.StartJogMode ()

Prerequi

High power to the robot must be enabled.
• The robot does not

sites

•
 need to be homed.

• The robot must be Attached by the thread.
• This mode is not compatible with torque, velocity or other special control modes.

e GPL program that has the robot attached hits a
ution for any reason.

Parameters

Remark

This me olled
mode to Virtual and
Hardwa d, tool and free
manual control modes. This method and the Move.SetJogCommand method are

rmit these same manual modes to be easily implemented by a GPL
Project. For example, these methods can be used by a GPL program to implement
manual

When a ode, it is moved in a manner similar to velocity control
mode in that a specified axis or group of axes are accelerated and moved at a specified

ntinuous speed until they are instructed to change their speed.

• This mode is terminated if th
breakpoint, is single stepped, or stops exec

None

s

thod switches all of the axes of a robot from the standard position contr
 jog (manual) control mode. This is the mode that is utilized by the
re Manual Control Pendants (MCP) to implement joint, worl

provided to pe

control modes via a graphics HMI or a joystick.

 robot is placed into this m

co

WARNING: Any axis commanded to move will continue to do so
until stopped. So, it is responsibility of the GPL Project to have
suitable safe guards and time outs to ensure that a motion is
terminated when required.

When this method is executed, it first waits for any in-process position controlled motions
to be completed. It then transitions all axes into jog control mode. Once in this mode, the
Move.SetJogCommand method must be executed to set and change the specific
manual mode, axis and motion speed.

When an axis speed is specified, the setting of the "System Test Speed" is ignored to
permit the robot to be moved in a consistent manner when debugging applications.

238

Move Class

To permit the axes of a robot to be moved back into range if they are accidentally mo
beyond their stop limits, joint control mode permits out-of-range axes to be moved back in
range, but not further out-of-range. In addition, the robot does not need to be homed in
order to move the axes in joint control mode to permit it to be manually repositioned.

The robot will remain in jog control mode until one of the following occurs:

ved

detach command or by halting user program execution for any
reason (this includes single stepping a GPL program).

Examples

Robot.Attached = 1 ' Get control of robot #1
Move.StartJogMode() ' Initiate jog control mode
Move.SetJogCommand(3, 3, 50) ' Set tool mode, Z-axis, 50% speed
Thread.Sleep(4000)
Move.SetJogCommand(2, 1, -50) ' Change to world mode, X-axis, -50% speed
Thread.Sleep(4000)
Move.StopSpecialModes ' Terminate jog mode

See Als

Move Class

1. The Move.StopSpecialModes method is executed to terminate
this mode.

2. A hardware error or hard E-stop or soft E-stop occurs.
3. A RapidDecel is issued.
4. The robot is detached by the user program either by issuing a

Robot.Attached = 0 ' Release control of robot

o

 | Move.SetJogCommand | Move.StopSpecialModes

239

GPL Dictionary Pages

Move.

d path while the path is being
executed.

StartRealTimeMod Method

Initiates special trajectory mode that permits a GPL program to make incremental
changes in the position and orientation of a planne

Move.StartRealTimeMod (coordinates, change_type)

Prerequisites

• The "Advanced Controls" license must be installed
• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.
• This mode is only compatible with the standard position control mode and

ian interpolated motions.

Parameters

coord tes

 requ
which
ystem

Remarks

he
accumulated incremental real-time changes.

n be used to incorporate senso to alter a baseline path for
spe esses. For example, if the tool tip must maintain a specific height as it moves
above a distorte he planned
path as the too
weavin otion dding a real-time
change that mo

When this meth d into this special
trajecto de even if a Cartesian motion is currently in progress. Thereafter, any
thread an post incremental changes in position (Dx, Dy, Dz) and orientation (Rx, Ry, Rz)
that will dynamically alter the planned path. Since these changes are immediately added

Cartes

ina

A ired numeric expression that specifies the coordinate system in
 the incremental changes are interpreted and the coordinate

 in which the accumulated modifications are stored. s

change_type

A required numeric expression that defines if the incremental changes
are applied once or if the changes are repeatedly applied (i.e. they are
interpreted as speeds).

This method initiates a special trajectory mode whereby a GPL program can specify
incremental changes in position and orientation that are immediately applied to the
executing trajectory. When this mode is active, each time that the Trajectory Generator
computes a Cartesian set point, it automatically modifies the set point to include t

This method ca
cial proc

r feedback or

d surface, input from a height sensor can be used to modify t
l is moving. As another example, if the robot is used for welding, a
 can be superimposed on the basic weld path by ag m
ves back and forth perpendicular to the direction of travel.

od is executed, the Attached robot is immediately place
ry mo
c

240

Move Class

to the planned path, the GPL program must guarantee that the magnitudes of each
change is small to avoid abrupt motions. If no motion is being executed, the changes will

uence of motions are
ile this mode is active,

only Cartesia
Cartesian m ed.

To simplify tes parameter
specifies on ntal
changes are ill
consider the foll
counter-clockwise as the tool tip moves along a straight-line path from p1 to p2..

alter the stationary position of the robot's tool. If a motion or seq
being executed, the changes will alter the planned tool path. Wh

n motions are permitted. This mode can span an arbitrary sequence of
otions and continues to operate even when no motion is being execut

the use of this method for different applications, the coordina
e of several choices for the coordinate system in which the increme
 interpreted and accumulated. To illustrate these alternatives, we w

owing basic Cartesian motion where the tool orientation is rotated

If the increm
Wor ordinates

ental changes are specified in World coordinates and are accumulated in
), incremental changes in position simply shift the

tation rotate the tool tip about its end point.
ld co (World-World mode

hanges in orienentire path and c

This mode decouples changes in orientation and position and so is conceptually very
easy to use. It is analogous to the motions permitted with the Manual Control Pendant's
World jog mode.

If the incremental changes are specified in Tool coordinates and the incremental changes
are accumulated in World coordinates (Tool-World mode), incremental changes in
position shift the path in a manner similar to World-World mode, but the shifts are
initially evaluated along the instantaneously direction of the tool. However, changes in
orientation not only change the orientation of the tool, but also rotate the subsequent
direction of the planned path.

241

GPL Dictionary Pages

This mode can best be understood if you imagine you are flying the tool around the
wor a d or backwards to offset the
path H along a new baseline path
and e This method is analogous to the
mot s s Tool jog mode.

The fina ental
change).

ksp ce. You can slip the tool right or left or move forwar
 it course. owever, if you turn the tool, you are setting

 th taught path is relative to this new baseline.
ion permitted with the Manual Control Pendant'

l method specifies changes in Tool coordinates and accumulates the increm
s in Tool coordinates (Tool-Tool mode

de is analogous to dynamically changing the dimension and orientation oThis mo f the
robot's tool. If you change the orientation in this mode, it generates a simple rotation

 tip. However, if you change the position, this is equivalent to offsetting the
 to curve if the orientation of the tool changes. If the tool does

not change its orientation, incremental changes in position simply shift the path.

The set s
follows:

about the tool
tool and will cause the path

 of coordinate systems to be used are defined by the coordinates parameter a

coordinates
Value Description

0 pleteness. Idle. Ignore incremental change commands. Provided for com

1 World-World mode. Changes specified in the World coordinate system
and accumulated in the World coordinate system.

2 ecified in the Tool coordinate system and
accumulated in the World coordinate system.
Tool-World mode. Changes sp

3 Tool-Tool mode. Changes specified in the Tool coordinate system and
accumulated in the Tool coordinate system.

242

Move Class

During e ges in
any of th usly
applied.
changes
modifica ificantly reduced from the general case of position and orientation
changes. So, incremental orientation changes should be specified as 0 unless needed.

As a convenience, the incremental changes can be specified as single steps that are only

of

ach Trajectory set point evaluation, any combination of incremental chan
e six degrees-of-freedom (Dx, Dy, Dz, Rx, Ry, Rz) can be simultaneo

 However, in terms of computational efficiency, if only incremental position
 are made, the computational requirements for applying the real-time
tions are sign

applied once or continuous changes that continue until new values are specified. The
continuous change modes are useful to produce smooth continuous changes without
requiring that a GPL thread post new values each trajectory cycle. The interpretation
the incremental changes are specified by the change_type parameter as follows:

change_type
Value Description

0 No change. Equivalent to specifying 0 for all 6 coordinates.

1 Once. Changes are applied a single time and then no further changes
are made until a new set of changes are posted.

2
Continuous, ignore System Speed. Changes are interpreted as speeds
(mm/sec or deg/sec) and are not affected by the setting of the System
Speed on the web interface Operator Control Panel.

3
Continuous, consider System Speed. Changes are interpreted as speed
(mm/sec or deg/sec) and are

s
 affected by the setting of the System Speed

on the web interface Operator Control Panel.

This mode will remain in effect until one of the following occurs:

1. The Move.StopSpecialModes method is executed to terminate
all special control modes for the robot.

2. A hardware error or hard E-stop or soft E-stop occurs.
3. A RapidDecel is issued.
4. The robot is detached by the user program either by issuing a

detach command or by halting user program execution for any
reason.

Examples

Public Sub MAIN
 Dim rtmod As New Thread("rtmod")
 rtmod.Start ' Start RT change service thread
 Robot.Attached = 1
 Move.StartRealTimeMod(1,2) ' Turn on RT correction function
 Move.Loc(p0, pf0)

Dim As Double

Adjust every other traj tick

 rtm_spd(2) = 10 ' +10 mm/sec in Z
 ElseIf (Signal.DIO(20002)) Then
 rtm_spd(2) = -10 ' -10 mm/sec in Z

 Move.Loc(p1, pf0)
 Move.WaitForEOM
 rtmod.Abort
 Move.StopSpecialModes ' Turn off RT correction function
 Robot.Attached = 0
End Sub
Public Sub rtmod
 rtm_spd(6)
 While True
 Controller.SleepTick(2) '
 If (Signal.DIO(20001)) Then

243

GPL Dictionary Pages

 Else
 rtm_spd(2) = 0 ' Don't move
 End If
 Move.SetRealTimeMod(rtm_spd) ' Set new speed
 End While

See Also

Mov

End Sub

e Class | Move.SetRealTimeMod | Move.StopSpecialModes | eRobot.CartMod |
Rob Acmot.RealTimeMod

244

Move Class

Move.

annel (DAC) whose value
d.

StartSpeedDAC Method

Starts, alters or stops automatic control of an analog output ch
is computed based upon the robot's instantaneous tool tip spee

Move.StartSpeedDAC (mode, n_segments, speed_array, dac_array)

Prerequisites

• The "Advanced Controls" license must be installed
• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.
• This mode is only compatible with the standard position control mode and

Cartesian interpolated motions.

Parameters

mode

An optional numeric expression that is not currently used. This is a
placeholder for future capabilities.

n_segments

A required numeric expression that evaluates to the Integer number of
piecewise linear interpolation segments that define how tool tip speeds
are converted to raw DAC commands. If this value is 0 or negative, the
SpeedDAC mode is terminated. The maximum permitted value for this
parameter is 3.

speed_array

An optional array of Doubles that define the ranges of speeds that are
interpolated in each piecewise linear segment. If n_segments is 1, the
first array element (0) and the second array element (1) define the range
of tool tip speeds that are converted to DAC values by interpolating
between the first two dac_array elements. If n_segments is 2, the
second array element (1) and the third (2) define the range of tool tip
speeds that are converted by interpolating between the second and third
dac_array elements. Speed values must be 0 or greater and must
monotonically increase within the speed_array. That is, element (1)
must be greater than element (0), and (2) must be greater than (1), etc.
All speeds are in units of mm/sec.

dac_array

An optional array of Doubles that define the ranges of DAC values that
are output for each of the piecewise linear interpolation segments. The
first two elements (0) and (1) define the range of DAC values that are

245

GPL Dictionary Pages

interpolated for the first segment. Each entry in this array is interpreted
as a raw DAC value from 32767 to -32768, which represent voltages
from +10VDC to -10VDC. There is no restriction on values stored in
each DAC element, i.e. sequential entries can be increasing, decreasing

Remark

This method initiates, changes or terminates a special trajectory mode that computes the

or the same.

s

instantaneous commanded speed of the attached robot's tool tip and automatically sets
the value of an analog output channel (DAC) based upon the computed speed. The

ory generator computes the tool tip speed each time it evaluates the path set
 This computation takes into consideration all of the characteristics of the

trajectory including accelerations, decelerations, motion blending, any reduced speed
due to t ontrol Panel, real-time path
modifica

The computed tool tip speed is converted to a DAC value using one or more piecewise
linear interpolation segments. If a single segment is specified, a range of speeds are
linearly converted to a range of DAC values. Speeds that are less than the lowest value

range are set to the first value in the DAC range. Speeds that are higher
est value in the speed range are set to the last value in the DAC range. If

two or m tool
tip spee

The followi rted to DAC values for a
 segment (n_segments=2) specification:

traject
points.

he global test speed set by the Operator C
tions, etc.

in the speed
than the high

ore linear segments are specified, a piecewise linear relationship between
ds and DAC values can be represented.

ng graph illustrates how tool tip speeds are conve
sample two

e DAC value is computed by the Trajectory Generator using the piecewise linea
ation, the value is sent to the servo code. The servo code interpolates betw
tial DAC values at the PID loop evaluation rate and w

Once th r
specific een
sequen rites the interpolated value
to the hardware DAC. This extra level of interpolation ensures that the DAC value will be

anged smoothly and accurately. ch

If this method is called with 0 segments specified, this special trajectory mode is
terminated and the DAC value is set to 0.

246

Move Class

This mode can be started, modified and stopped at any time when the robot is idle or
moving. However, once started, only Cartesian interpolated motions (e.g. straight-line or
circular interpolated) can be executed.

thod.
There are several Parameter Database values that are important for the operation of the
SpeedDAC me

Parameter
Database ID

Parameter Name Description

This parameter must be set to the controlle
number and the number of the DAC to be

2014 Speed DAC output map:
node, channel

value of the specified DAC channel will be
continuously written by the servo code even

r node

te

generated. If this parameter is set, the output

when the SpeedDAC method is not enabled.
de DAC

lue" (DataID 3542) can be manually
e DAC. The value of

DACs configured for SpeedDAC operation

controlled. If this parameter is not set, the
SpeedDAC method can still be used to compu
the instantaneous speed of the robot's tool tip,
but no hardware analog output signal will be

During this period, the "SpeedDAC mo
output va
written to output values to th

should not be modified via GPL's Si
methods.

gnal.AIO

3541 SpeedDAC mode tool tip
speed

parameter returns the robot's tool tip spe
mm/sec. This is the actual tool tip spee
affected by the "System wide test speed

If the SpeedDAC mode is enabled, this
ed in

d and is
" (DataID

601).

3542 output value configured via the "Speed D
SpeedDAC mode DAC

DAC and will range from 32767 to
SpeedDAC mode is disable but th

If the SpeedDAC mode is enabled, this
parameter returns the value that is written to the

 -32768. If the
e DAC is

AC output map:
the servos control

the value of the DAC and this DataID can be
.

node, channel" (DataID 2014),

written to explicitly set the DAC value

This mode will remain in effect until one of the following occurs:

1. A Move.StartSpeedDAC method is executed with a zer
n_segments parameter.

o

2. The Move.StopSpecialModes method is executed to terminate
all special control modes for the robot.

ft E-stop occurs.

5. The robot is detached by the user program either by issuing a
detach command or by halting user program execution for any
reason.

Examples

3. A hardware error or hard E-stop or so
4. A RapidDecel is issued.

247

GPL Dictionary Pages

Dim prof1 As New Profile

 ' Get control of robot #1

dacs(0) = 1*32768/10 ' output 1 VDC

dacs(1) = 5*32768/10 ' output 5 VDC

tartSpeedDAC(0, 1, speeds, dacs) ' Start SpeedDAC output
prof1.Straight = True ' Must be Cartesian motion
loc position to move to
Mov o o loc1 using prof1
Mov a
Mov t e mode
Robo A

Move C

Dim loc1 As New Location
Dim speeds(2), dacs(2) As Double
Robot.Attached = 1
speeds(0) = 30 ' At 30 mm/sec

speeds(1) = 300 ' At 300 mm/sec

Move.S

1.XYZ(10,20,-30,0,180,20) ' Define
e.L c ' Move t(loc1, prof1)
e.W itForEOM
e.S artSpeedDAC(0,0) ' Terminat
t. ttached = 0 ' Release control of robot

See Also

lass | Move.StopSpecialModes | Robot.CartMode

248

Move Class

Move.StartTorqueCntrl Method

Initiates execution of torque control mode for one or more motors.

Move.StartTorqueCntrl (motor_mask, adc_mask, torques_array)

Prerequi

• High power to the robot must be enabled.

sites

• The robot does not need to be homed.
• The robot must be Attached by the thread.

Parame

quired numeric expression that evaluates to a bit mask that specifies
the motors to be placed into torque control mode. The least significant bit

should be zero if no motor is to be ADC

Since the peak motor torque can usually be higher than the rated torque,
ADC

torques_arra

A re r h
motor o
value for the robot’s first motor. Array elements for motors that are not
torque controlled are ignored. Each array element is interpreted as a
percentage, where a value of +100 or –100 indicates that the torque
output should be equivalent to the full positive or negative rated motor

s gre

Remarks

hat are not placed
d can be moved

n continue to

ters

motor_mask

A re

corresponds to the first motor for the attached robot.

adc_mask

A required numeric expression that evaluates to a bit mask that specifies
the single motor whose torque is to be directly controlled by the first ADC
input channel. This value
controlled. A scaled ADC reading of +1.0 or –1.0 will drive the
corresponding motor at its full positive or negative rated motor torque.

 values greater than +- 1.0 are permitted.

y

qui ed array of Doubles that contains a torque specification for eac
f the robot. The first array element (0) corresponds to the torque

torque. Since the peak motor torque can usually be higher than the rated
torque, value ater than +- 100% are permitted.

This the specified motors into torque control. Motors method places t
into torque control mode continue to operate in position control mode an

ndard Move Class Methods. Thus, some axes of the robot caby the sta

249

GPL Dictionary Pages

follow a position-controlled path while others can exert a force or can move freely if their
torque output is set to zero.

If a motor is specified in the adc_mask, that motor’s torque output level is the sum of the
percentage of rated motor torque specified in the torques_array and the value defined by
the ADC input.

When this method is executed, it first waits for any in-process motions to be completed. It
then transitions the specified motors into torque control and sets their initial torque levels
to the values specified in the torques_array. The torque levels can subsequently be
changed by executing a Move.SetTorques method or by a change in the ADC signal.

Since torque control does not close the position loop around a motor, the torque applied
is unaffected by the current setting of the "System Test Speed". This is the speed value
that can be set via the web Operator Control Panel or the "System wide test speed in %"
(DataID 601) database parameter.

The specified motors will remain in torque control mode until one of the following occurs:

1. The Move.StopSpecialModes method is executed to terminate
torque control mode for all motors.

2. A hardware error or hard E-stop or soft E-stop occurs.
3. A RapidDecel is issued.
4. The robot is detached by the user program either by issuing a

detach command or by halting user program execution for any
reason.

Torque control mode is compatible with both position and velocity control modes.
However, torque control mode can only be initiated when in position control mode.

Examples

Dim torques(12) As Double ' All Double torques will be 0
Dim ii, jj As Integer
Robot.Attached = 1 ' Get control of robot #1
Move.StartTorqueCntrl(1, 0, torques) ' Set motor 1 to torque mode
For jj = 1 To 10
 For ii = 0 To 100
 Controller.Sleeptick() ' Wait till next trajectory cycle
 torques(0) = ii/10 ' New torque value
 Move.SetTorques(torques) ' Ramp torque from 0% to 10%
 Next ii
Next jj
Move.StopSpecialModes ' Terminate torque mode
Robot.Attached = 0 ' Release control of robot

See Also

Move Class | Move.SetTorques | Move.StopSpecialModes

250

Move Class

Move.StartVelocityCntrl Method

Switches all axes of a robot from position to velocity control mode.

Move.StartVelocityCntrl (mode, adc_mask, speeds_array, profile_1)

Prerequisites

• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.

Parameters

mode

A required numeric expression that evaluates to the mode of velocity
control to be executed. Currently, this parameter is unused and should
be set to 0 for compatibility with future software releases.

adc_mask

A required numeric expression that evaluates to a bit mask that specifies
 the first ADC

input channel. This value should be zero if no axis is to be ADC
 of +1.0 or –1.0 will drive the

 100% speed.

speeds

bles that contains a speed specification for each
axis of the robot. The first array element (0) corresponds to the target
speed for the robot’s first axis. One value must be provided for each axis
of the robot. Each array element is interpreted in units of mm/sec (linear

c (rotary axes). These values are limited by the
*

"Max %speed allowed" (DataID 2704).

profile_1

 expression that evaluates to a Profile
Object value. This value defines the acceleration, deceleration and
acceleration/deceleration ramp times to be use to change the speed of
each axes. In certain cases, it may not be possible to honor the ramp
times without over-shooting the target velocity, but the acceleration and
deceleration limits are adhered to. For example, this can occur if an axis
is accelerating to a high velocity and suddenly a new, lower velocity
target is specified.

the single axis whose speed is to be directly controlled by

controlled. A scaled ADC reading
corresponding axis at its full

_array

A required array of Dou

axes) or deg/se
maximum permitted joint speeds, "100% joint speeds" (DataID 2700)

A required Profile Object or an

251

GPL Dictionary Pages

Remarks

This method switches all of the axes of a robot from the standard position controlled
mode to velocity controlled mode. When in velocity controlled mode, each axis accepts a

is
h

e is terminated or an error occurs.

rol mode is compatible with torque control
. That is, when in velocity control mode, one or more motors can be in torque

l mode when the robot is in
position control mode. After motors are placed into torque control, the position-controlled

an then be switched to velocity control mode.)

If an x get speed is the sum of the
appropr he ADC input.

n this method is executed, it first waits for any in-process position controlled motions
e completed. It then transitions all axes into velocity control mode and sets the initial

s to the values specified in the speeds_array. The speed targets can
quently be changed by executing a Move.SetSpeeds method or by a change in the

ADC signal.

As a co lications, the velocity control target speed is affected

target speed as its command rather than a position. The target speeds can be set by th
method or can be updated at any time using the Move.SetSpeeds method. Once eac
axis has accelerated, it will continue to rotate at its target speed until the speed is
explicitly changed, velocity control mod

As with position control mode, velocity cont
mode
control mode. (Note: Motors must be placed into torque contro

joints c

 a is is specified in the adc_mask, that axis' tar
iate value in the speeds_array plus the value defined by t

Whe
to b
target speed
subse

nvenience in debugging app
by the current setting of the "System Test Speed". This is the speed value that can be

 web Operator Control Panel or the "System wide test speed in %" (DataID
601) database parameter. In addition, software and hardware limit stop checking is still
perform , motors
can be c a ported
by the robot's kinematic module.

 remain in velocity control mode until one of the following occurs:

e robot is detached by the user progra g a
mand or by halting user program execution for any

reason.

Examples

As Double ' All Double speeds will be 0

ew Profile ' Use default accel/decel
Dim ii As Integer
Robot.A
Move.St
For ii
 spe
 Mov
 Con
Next ii
Move.StopSpecialModes ' Terminate velocity mode
Robot.Attached = 0 ' Release control of robot

set via the

ed during this mode of operation. If an axis is to be rotated continuously
onfigured for continuous turn capability assuming th t this capability is sup

The robot will

1. The Move.StopSpecialModes method is executed to terminate
velocity control mode.

2. A hardware error or hard E-stop or soft E-stop occurs.
3. A RapidDecel is issued.
4. Th m either by issuin

detach com

Dim speeds(12)
Dim pf1 As N

ttached = 1 ' Get control of robot #1
artVelocityCntrl(0, 0, speeds, pf1) ' Set to velocity control mode
= 36 To 360 Step 36
eds(0) = ii ' New speed value
e.SetSpeeds(speeds) ' Ramp axis 1 speed
troller.Sleeptick(30) ' Wait a little while

252

Move Class

See Also

Move Class | Move.SetSpeeds | Move.StopSpecialModes | Move.StartTorqueCntrl

253

GPL Dictionary Pages

Move.

Terminates execution of any active special trajectory control modes.

StopSpecialModes Method

Move.StopSpecialModes

Prerequ

• High power to the robot must be enabled.
• The robot must be Attached by the thread.

Parame

Remark

If any sp valent of a
obot.RapidDecel to immediately decelerate any moving axes of the attached robot to a

will be
ode. If no special
 not signal an error.

In particular, the following modes of execution will be terminated:

External trajectory control mode
Jog (manual) control mode
Master/slave mode
Real-time trajectory modification mode
Torque control mode
Velocity control mode

Examples

Move.StopSpecialModes ' Halts any special control modes in effect

See Also

Move Class

isites

ters

None

s

ecial trajectory modes are in effect, this method executes the equi
R
stop. At the completion of this operation, all special trajectory generation modes
terminated and the robot will be in the standard position control m

operation and doesmodes are in effect, this method performs no

 | Move.StartJogMode | Move.StartRealTimeMod | Move.StartTorqueCntrl |
Move.StartVelocityCntrl | Robot.Rapid.Decel

254

Move Class

Move.Trigger Method

Primes the system to automatically assert a digital output signal or a thread event at a
prescribed trigger position during the next or current motion. Up to two independent

 a given motion. triggers can be set for

Move.Trigger (mode, trigger_pt, channel)
-or-
Move.Trigger (mode, trigger_pt, thread_object, event_mask)

Prerequisites

High power to the robot must be enabled.
The robot must be Selected or Attached by the thread.

s

ger_pt

he

(Digital Output Trigger Only) A required arithmetic expression that
 trigger point.
at the trigger

point. If the channel number is negative, the output is turned OFF at the
trigger point. If the value is 0, any previous Move.Trigger operation is
disabled.

thread_object

(Thread Event Trigger Only) A required Thread Object that defines the
user thread whose event will be set at the trigger point.

event_mask

(Thread Event Trigger Only) A required numeric expression that
specifies the events to be set at the trigger point. Each bit in event_mask
corresponds to a different event. Bit 0 (mask value &H0001) corresponds
to event 1. Multiple events may be specified. The maximum event is 16,
so the maximum value for event_mask is &HFFFF.

•
•

Parameter

mode

A required arithmetic expression that defines the manner in which the
trigger position is defined.

trig

A required arithmetic expression that defines the trigger position. T
interpretation of this value is a function of the mode.

channel

specifies the digital I/O channel whose output is set at the
If the channel number is positive, the output is turned ON

255

GPL Dictionary Pages

Remarks

After this instruction is executed, the digital output signal or thread event defined by the
n the next or current motion reaches a specified trigger

ed by the mode and the trigger_pt values as
parameters will be asserted whe
position. The trigger position is defin
described in the following table:

mode trigger_pt Resulting Trigger Point

0 % (0-100)
% of change in position of the motion measured from th
start of the motion, e.g. 0 indicates start of motion.

e

1 % (0-100)
% of change in position of the motion measured from the
end of the motion, e.g. 0 indicates end of motion.

2 mm
Distance in millimeters from the start of the motion. Only
valid for straight-line and arc motions.

3 mm
Distance in millimeters before the end of the motion. Only
valid for straight-line and arc motions.

4 seconds Time after the start of the motion.
5 Time before the end of the motion. seconds

100+n

Applies to the currently executin ad of the next
m 2
ex the tly
ex otio

g motion inste
otion. For exa
cept that

mple, a mode of 102 is the same as mode
 trigger is with respect to the curren

ecuting m n instead of the next motion.

1000+m

De sec
of the first. For example, a mode of 1102 is the same as
mode 102 except that the second trigger of the currently
executing motion is primed instead of the first.

fines the ond trigger for the specified motion instead

For ex is "1" and igger_pt is "10", if th is joint
interpolated, the channel signal will be asserted by the first trigger when the joints are

ir final va tely, the same result could be achieved with a
mode of "1001". In this case, the second trig

y indepen den

For modes 4 & 5, the trigger point is comput
peed (as set per

System Speed is set to 50%, the motion tim
ell. To se valu

the trigger_pt value should be adjusted by th

If the next motion is blended with the subseq
f the next m e tri

blending period. Since the start and end of
motio igge
next motion is blen previous motion, trigger points

f t tio

r a signal when the rob e end point of a motion, but that
 sub otio ximately

ample, if the mode the tr e next motion

90% of the way to the lues. Alterna
ger will be utilized. The two triggers per
tical in their performance. motion are completel dent and i

ed assuming that the system is operating
ator Control Panel) at a value of 100%. If the with the System S via the O
e is doubled and the effective trigger point
e to be independent of the System Speed,
e value of the "System

time is doubled as w t the time
 wide test speed in %"

is

(DataID 601).

uent motion and a mode is selected that
gger point will be relative to the end of the
the blending p

relative to the end o otion, th
eriod are a function of both the

r point will vary as a function of both
ded with the

next and the subsequent
motions. Likewise, if the

ns, the tr

defined relative to the start o
blending.

he next mo n will vary as a function of the motion

If you desire to trigge ot reaches th
motion is blended with the sequent m n, it is possible to trigger at appro

t reg de s. Specifically,
en the ches

positions that are equidistance before and after Pn (Pn minus a small delta and Pn plus a

the correct position withou ard to the tails of the blending algorithm
if you wish to trigger wh robot rea position Pn, create two intermediate

256

Move Class

small delta). Then rather than moving to Pn, move to Pn minus the delta and then Pn
plus the delta. If you set the trigger to occur 50% of the way through the motion between

ese two intermediate positions, the signal will trigger when the robot is approximatelyth at
n. P

If a motion terminates in the stand
guaranteed to be asserted at s

ard manne
me point duri

r
o

RapidDecel function prematurely terminates

Examples

New Thread(thre
Profile '
 '

 Robot.Attached = 1 '
 Signal.DIO(20001) = 0 ' Turn off signal
 Move.Trigger(0, 20, 20001) ' Turn on 20% into motion
 Move.Trigger(1001, 10, Evt_Thd, &H10)' Trigger event 90% into motion

 Move.Rel(Location.XYZValue(10), pf1) ' Move 10 mm in tool coordinates
 R ' Release contr
End S

Public Sub Bckgnd_thread()
 Thread.WaitEvent(&H10, -1) ' Wait for trigger

 '
ad d")

See Also

Move Class

, the digital output signal or thread event is
ng the motion. However, if an error or

d. a motion, the trigger may not be asserte

Public Sub MAIN
 Dim Evt_Thd As "Bckgnd_ ad")
 Dim pf1 As New
 Evt_Thd.Start

 Use default accel/decel
 Start background thread
 Get control of robot #1

obot.Attached = 0
ub

 ol of robot

 Signal.DIO(20001) = 0
 Console.WriteLine("Thre

 triggere

 Turn off signal

End Sub

257

GPL Dictionary Pages

Move.WaitForEOM Method

Suspends execution of the current thread until the robot completes its current motion.

Move.WaitForEOM

Prerequisites

• High power to the robot must be enabled.
The robot must be Attached by the thread.

Remarks

This allo izing its
executio d until any current robot
motion has been completed. This method is valid for waiting until the completion of both

elocity controlled motions.

Examples

Dim pro le ' Create new profile set to default values
Move.Loc(loc1, prof1) ' Move to global loc1
Move.WaitForEOM ' Execution suspended until robot at loc1
 : ' Execution continues here after robot stops

See Als

Move C

•

Parameters

None

ws a program that is controlling a robot (i.e. Attached to) to synchron
n with the robot by suspending execution of the threa

position and v

f1 As New Profi

o

lass | Move.Approach | Move.Loc | Move.OneAxis | Move.Rel

258

Networking Classes
Networking Classes Summary

The following pages provide detailed information on the properties and methods for the
mmunications.

 a IPEndPoint Class for specifying IP and port
 is the basis for most networking I/O operations and

contains the basic send and receive methods; a TcpListener Class that is used for
enting TCP server applications; a TcpClient Class for implementing TCP client

applications; and finally a UdpClient Class for implementing both the server and client
 UDP based communications.

tables below briefly summarize the properties and methods for each Class, which
are described in greater detail in the following sections.

various classes that implement Ethernet networking co

The networking classes include:
addresses; a Socket Class that

implem

side of

The

IPEndPoint Member Type Description

New IPEndPoint Constructor Creates an Endpoint and allows the IP
Method Address and Port to be specified.

ipendpoint_obj.IPAddress Property Sets or gets the IP Address of an Endpoint.
ipendpoint_obj.Port Property Sets or gets the Port of an Endpoint.

Socket Member Type Description

socket_obj.Available Property Gets the number of data bytes currently
available to receive from a Socket.

socket_obj.Blocking Property If True, the Socket blocks. If False
Sets or gets the blocking mode for a Socket.

, it does
not block.

socket_obj.Close Method Closes any connections associated with a
Socket.

socket_obj.Connect Method remote TCP
Requests a TCP Client connection with a

Server.

socket_obj.KeepAlive Property
Sets or gets the flag that controls whether a
keep-alive message is automatically
transmitted over the current TCP connection.

socket_obj.Receive Method Receives a datagram from an open TCP
connection.

socket_obj.ReceiveFrom Method Receives a datagram from an open UDP
connection.

socket_obj.ReceiveTimeout Property Sets or gets the receive timeout, in
milliseconds, for a Socket.

socket_obj.Send Method Sends a datagram on an open TCP
connection.

socket_obj.SendTimeout Property Sets or gets the send timeout, in
milliseconds, for a Socket.

socket_obj.SendTo Method Sends a datagram to an open UDP

259

GPL Dictionary Pages

connection.

TcpClient Member Type Description

New TcpClient Constructor
Method

 Creates an Object for a TCP Client and
optionally requests a connection.

tcpclient_obj.Client Method Returns the embedded Socket for
performing I/O.

tcpclient_obj.Close Method Closes a Client Socket and breaks any
connection.

TcpListener Member Type Description

New TcpListener Constructor
Method

Creates an Object for a TCP Server to
listen for connections.

tcplistener_obj.AcceptSocket Method Accepts a connection and returns a new
Socket Object for use by the TCP Server.

tcplistener_obj.Close Method Stops listening and closes the listener
Socket.

tcplistener_obj.Pending Property AcceptSocket will succ
False.

True if there is a pending connection and
eed. Otherwise

tcplistener_obj.Start Method Starts listening for connection requests.

tcplistener_obj.Stop Method Stops listening and closes the listener
Socket. Same as Close method.

UdpClient Member Type Description

New UdpClient Constructor
Method Creates an Object for I/O using UDP.

udpclient_obj.Client Method Returns the embedded Socket for
performing I/O.

udpclient_obj.Close Method Closes a Socket.

260

Networking Classes

New IPEndPoint Constructor

Constructor for creating an IP endpoint object and optionally initializing it.

New IPEndPoint (IP_address, port_number)

Prerequisites

None

Parameters

IP_address

An optional string containing a standard IP address in the form

An optional number specifying the port number, from 0 to 65536 of a
process, protocol, or connection. If omitted, the port number is assigned
automatically.

Remark

specifies a computer and process on a
network. When messages are exchanged, both the sender and the receiver have an
endpoint address consisting of these two items.

Dim ep As New IPEndPoint("192.168.0.2", 1234) ' Port 1234 at address 192.168.0.2
Dim ep As New IPEndPoint("", 69) ' Port 69 at any address

See Also

Networking Classes

“nnn.nnn.nnn.nnn”. This address identifies a computer or computer-
based device on the network. If omitted, or empty, the IP address is
assumed to be a “wild card”, matching any address.

port_number

s

The combination of IP address and port uniquely

Examples

 | ipendpoint_object.IPAddress | ipendpoint_object.Port

261

GPL Dictionary Pages

ipendpoint_object.IPAddress Property

ted with an IPEndPoint object. Sets or gets the IP address associa

ipendpoint_object.IPAddress = <ip_address_string>
-or-
...ipendpoint_object.IPAddress

Prerequi

Parameters

Remarks

e IP Address identifies a computer or computer-based device on the network. If empty,
the IP address is assumed to be a “wild card”, matching any address.

 IP address.

Exampl

point

Networ

sites

None

None

Th

This property converts the IP Address part of an IPEndPoint Object to or from a string
value. The string value contains the address in the form nnn.nnn.nnn.nnn where each
nnn field is a decimal number representing 8 bits of the 32-bit

es

Dim ep As New IPEndPoint()
ep.IPAddress = "192.168.0.2" ' Assign the IP Address to the endpoint
Console.Writeline(ep.IPAddress) ' Display the IP Address of the end

See Also

king Classes | NewIPEndPoint | ipendpoint_object.Port

262

Networking Classes

ipendpoint_object.Port Property

Sets or gets the port number associated with an IPEndPoint Object.

ipendpoint_object.Port= <port_number>
-or-
...ipendpoint_object.Port

Prerequi

rt number specifies a process, protocol, or connection at an endpoint. This number
nge from 0 to 65536.

is property sets or gets the port number of an IPEndPoint Object.

Exampl

Dim As New
n endpoint object

Networ

sites

None

Parameters

None

Remarks

The po
may ra

Th

es

 ep IPEndPoint()

ep.Port = 1234 ' Set the port of a
Console.Writeline(ep.Port) ' Display the port of the endpoint

See Also

king Classes | NewIPEndPoint | ipendpoint_object.IPAddress

263

GPL Dictionary Pages

socket_object.Available Property

 from a Socket. Gets the number of data bytes currently available to receive

...socket_object.Available

Prerequisites

The Socket must be open and ready to receive data.

Parameters

None

Remarks

This pro t. If this number is
greater than zero, a Receive or ReceiveFrom method may be called to read data.

rows an Exception if the Socket is not open or an error occurs.

See Also

perty returns the number of bytes available on an open Socke

Th

This method may be used to poll for data to read. A better solution is to set the
ReceiveTimeout property for the Socket.

Examples

While ts.Available = 0 ' Test if anything to receive
 ead.Sle 0) ' Wait 1 second
End While

500) ' Receive the data

 Thr ep(100

ts.Receive(recv, 1

Networking Classes | socket_object.Blocking | socket_object.ReceiveTimeout

264

Networking Classes

socke

Gets or sets the blocking I/O mode for a Socket.

t_object.Blocking Property

socket_object.Blocking olean_value> = <bo
-or-
...socket_object.Blocking

Prerequisites

The Socket must be open in order to set this flag.

Parameters

None

Remarks

e may be used to poll for data to read by repeatedly issuing receive

Exampl

ts.Blocking = 0 ' Set to non-blocking mode
Whi

End
ts.Receive(recv, 1500) ' Receive the data

See Also

Networ

This property sets or gets the state of the blocking mode for a Socket. If the Socket is in
blocking mode, calls to receive data wait until data is available, and calls to send data
wait if the output queue is full. If the Socket is not in blocking mode, calls to send or
receive data throw an Exception if they would have to wait.

By default Sockets are created in blocking mode.

Non-blocking mod
requests and handling the Exception. A better solution is to use the Available property
or to set the ReceiveTimeout or SendTimeout property for the Socket.

es

le ts.Available = 0 ' Test if anything to receive
 Thread.Sleep(1000) ' Wait 1 second
 While

king Classes | socket_object.ReceiveTimeout | socket_object.SendTimeout

265

GPL Dictionary Pages

socket_ob

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
ject.

ject.Close Method

UdpClient Ob

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

266

Networking Classes

socket_object.Connect Method

Initiates a TCP client connection with a remote TCP server.

socket_object.Connect (remote_endpoint)

Prerequisites

The Socket Object must have been created by a tcpclient_object.Client method with the
endpoint parameter omitted.

Parame

ote_endpoint

quired IPEndPoint Object that specifies the IP address and port
number of the remote endpoint to which you wish to connect.

Remarks

This method is only called when the remote endpoint of a connection was not specified in
the cons tained.

Examples

 tc As New TcpClient() ' Optional endpoint not specified

See Als

Networkin

ters

rem

A re

tructor for the initial TcpClient Object from which the Socket was ob

Dim
Dim sock As Socket
Dim ep As New IPEndPoint("192.168.0.3", 1234)
sock = tc.Client
sock.Connect(ep)

o

g Classes | New TcpClient Constructor

267

GPL Dictionary Pages

socket_object.KeepAlive Property

Sets or gets the Boolean flag that controls whether a keep-alive message is
automatically transmitted over the current TCP connection.

socket_object.KeepAlive = <boolean_value>
-or-
...socket_object.KeepAlive

Prerequi

The y be open to set this property.

None

Remarks

This property sets, clears or returns the keep-alive flag for the current TCP connection.
When s lly on the
TCP co the system
to detec network cable is unplugged) even if

d has not recently communicated using the connection.

If this flag is not set, an idle s. If the network
path is s to
send a

sing the keep-alive feature eliminates the need to implement “heartbeat” messages
ithin your application to detect broken connections. Also, since the keep-alive message

is only sent when the connection is idle, it does not increase traffic on a busy connection.

The keep-alive timing for GPL is pre-set as described below and cannot be changed.

sponse is received, additional keep-alive packets are sent every 2
seconds.

nection. If the
remote node wishes to detect a broken connection, it must also set its keep-alive flag.

Examples

Dim tc () ' Optional endpoint not specified

int("192.168.0.3", 1234)

sites

Socket must currentl

Parameters

et, the local network node sends a special keep-alive packet periodica
nnection whenever it is idle for a period of time. This message permits
t if the network connection is broken (e.g. the

the associated GPL threa

 TCP connection does not send any message
broken, the local node will not detect the broken connection until it attempt
message.

U
w

1. If the connection is idle, a keep-alive packet is sent every 14 seconds.
2. If no re

3. If no response is received after 9 successive keep-alive packets (a total of 32
seconds) the connection is closed locally.

The keep-alive flag only enables the local node to detect a broken con

As New TcpClient

Dim sock As Socket
Dim ep As New IPEndPo

268

Networking Classes

sock = tc.Client
sock. (ep)
sock.KeepAlive = True ' Enable keep-alive for

Connect
ion

See Als

Networking Classes

 this connect

o

269

GPL Dictionary Pages

socket_object.Receive Method

Receives a message from an open TCP connection.

...socket_object.Receive(input_buffer, max_length)

Prerequi

ction must exist for the Socket.

lient_object.Client method or the

Parameters

uffer

A ByRef String variable where the received data is stored.

 is received. There is no

his method returns the number of bytes of data received. If the number is zero, this
indicates that the TCP connection has been broken by either the local or remote

If any other network errors occur, this method throws an Exception.

Examples

Dim ep As New IPEndPoint("192.168.0.3", 1234)
Dim tc As New TcpClient(ep)
Dim sock As Socket
Dim input As String
Dim count As Integer
sock = tc.Client
count = sock.Receive(input, 2000)

See Also

Networking Classes

sites

An active TCP conne

The Socket Object must have been created by the tcpc
tcplistener_object.AcceptSocket method.

input_b

max_length

The maximum number of data bytes that are read. If more bytes are
available than this maximum, they must be read by subsequent Receive
method calls.

Remarks

If blocking is enabled, this method blocks until some data
guarantee that an entire datagram is received at once.

T

endpoint. In this case, the program should close the Socket.

 | socket_object.ReceiveFrom

270

Networking Classes

socket_object.ReceiveFrom Method

t. Receives a message from an open UDP Socke

...socket_object.ReceiveFrom(input_buffer, max_length, remote_endpoint)

Prerequisites

The Socket Object must be open for UDP I/O.

The Socket Object must have been created by the udpclient_object.Client method.

Parameters

input_buffer

A ByRef String variable where the received data is stored.

max_length

The maximum number of data bytes that are read. If more bytes are

remote_endpoint

A ByRef IPEndPoint Object that receives endpoint information
ntents

of remote_endpoint are ignored and replaced by the new information.

Remark

ata is received. The entire
datagram is transferred by this method, if the max_length value is large enough.

Because of internal limitations on datagram size, max_length values greater than 1536
 not useful.

that number is zero, this
 should therefore be closed.

ors occur, this method throws an Exception.

Exampl

m local_ep As New IPEndPoint("", 1234) ' Receive data for port 1234.
Dim uc As New UdpClient(local_ep)

Dim input As String

available than this maximum, they are lost.

identifying the remote source of the received data. The original co

s

If blocking is enabled, this method blocks until some d

are

This method returns the number of bytes of data received. If
een disconnect andindicates that the Socket has b

If any other network err

es

Di

Dim remote_ep As IPEndPoint
Dim sock As Socket

271

GPL Dictionary Pages

Dim count As Integer
sock = uc.Client
count = sock.ReceiveFrom(input, 2000, remote_ep)
Console.Writeline("Remote IP address: " & remote_ep.IPAddress)
Console.Writeline("Remote Port: " & CStr(remote_ep.Port))

See Als

Networking Classes

o

 | socket_object.Receive

272

Networking Classes

socket_object.ReceiveTimeout Property

in milliseconds, for a Socket to block while waiting to
receive data.
Sets or Gets the timeout period,

socket_object.ReceiveTimeout = <timeout>
-or-
...socket_object.ReceiveTimeout

Prerequisites

The y be open to set this property.

Parameters

None

Remarks

This property allows you to set the timeout period for a Receive or ReceiveFrom
nly applies if the Socket is set to blocking. If a receive request blocks waiting
ill only wait for the specified timeout period. If that time is exceeded, the

receive re
disabled

Examples

ts.Rece
ts.Receive(recv, 1500) ' Receive the data

Networ

Socket must currentl

method. It o
for data, it w

quests throws an Exception. If the timeout period is set to 0, the timeout is
 and a request may block indefinitely.

iveTimeout = 30000 ' Timeout in 30 seconds

See Also

king Classes | socket_object.Blocking| socket_object.SendTimeout

273

GPL Dictionary Pages

socke

ends a message to an open TCP connection.

t_object.Send Method

S

...socket_object.Send(output_buffer, max_length)

Prerequisites

An active TCP connection must exist for the Socket.

The Socket Object must have been created by the tcpclient_object.Client method or the
tcplistener_object.AcceptSocket method.

Parameters

output_buffer

The String value that is sent.

max_length

An optional value indicating the maximum number of data bytes to send.
If omitted or zero, the entire output_buffer string is sent.

Remarks

If blocking is enabled, this method blocks if the output queue is full.

This method returns the number of bytes of data actually sent. If in blocking mode, the
returned value is always equal to the number of bytes requested. In non-blocking mode,
the value may be less than the number of bytes requested. In that case, you should re-
issue the Send to output the remainder of the bytes.

If any network errors occur, this method throws an Exception.

Examples

Dim ep As New IPEndPoint("192.168.0.3", 1234)
Dim tc As New TcpClient(ep)
Dim sock As Socket
Dim output As String
Dim count As Integer
sock = tc.Client
...
count = sock.Send(output)

See Also

Networking Classes | socket_object.SendTo

274

Networking Classes

socket_object.SendTimeout Property

ta.
Sets or Gets the timeout period, in milliseconds, for a Socket to block while waiting to
send da

socket_object.SendTimeout = <timeout>
-or-
...socket_object.SendTimeout

Prerequ

e

Parame

None

Remarks

The property allows you to set the timeout period for a Send or SendTo method. It only
pplies if the Socket is set to blocking. If a send request blocks waiting for the output

queue, it will only wait for the specified timeout period. If that time is exceeded, the send

Exampl

See Also

Networking Classes

isites

Non

ters

a

request throws an Exception. If the timeout period is set to 0, the timeout is disabled and
a send may block indefinitely.

es

ts.SendTimeout = 30000 ' Timeout in 30 seconds
ts.Send(trns, 1500) ' Send the data

 | socket_object.Blocking| socket_object.ReceiveTimeout

275

GPL Dictionary Pages

socke

an open UDP Socket.

t_object.SendTo Method

Sends a message using

...socket_object.SendTo(output_buffer, max_length, remote_endpoint)

Prerequ

Socket Object must be open for UDP I/O.

cket Object must have been created by the udpclient_object.Client method.

s

The String value that is sent.

max_length

An optional value indicating the maximum number of data bytes to send.
r zero, the entire output_buffer string is sent.

remote_endpoint

ntains endpoint information identifying the
remote destination for the data sent.

Remarks

If blocking is enabled, this method blocks if the output queue is full.

This method returns the number of bytes of data actually sent. If that number is less than
the number requested, you should re-issue the SendTo to output the remainder of the
bytes.

If any network errors occur, this method throws an Exception.

Examples

Dim uc As New UdpClient()
Dim remote_ep As New IPEndPoint("192.168.0.5")
Dim sock As Socket
Dim output As String
Dim count As Integer
sock = uc.Client
count = sock.SendTo(output, 0, remote_ep)

isites

The

The So

Parameter

output_buffer

If omitted o

An IPEndPoint Object that co

276

Networking Classes

...
count = sock.ReceiveFrom(input, 2000, remote_ep) ' Get new remote endpoint

 remote_ep) ' Reply to previous sender

See Als

Networking Classes

...
count = sock.SendTo(output, 0,

o

 | socket_object.Send

277

GPL Dictionary Pages

New TcpClient Constructor

server.
Constructor for creating a TcpClient Object and optionally connecting to a remote TCP

New TcpClient (endpoint)

Prerequisites

None

Parameters

endpoint

e

 be called for the TCP client
Socket before I/O can be performed.

Examples

ddress 192.168.0.2
Dim tc As New TcpClient(ep) ' Connect to remote endpoint

m tc As New TcpClient() ' Create socket but do not connect

Networking Classes

An optional IPEndPoint Object that contains the IP address and port
identifying the remote endpoint of a TCP server. If omitted, a Connect
method must be called later for the TCP client Socket before I/O can b
performed.

Remarks

This constructor creates a new TcpClient Object and creates the underlying Socket. If
the optional endpoint parameter is specified, a connect request is sent immediately to the
remote server. If it is omitted, a Connect method must

Dim ep As New IPEndPoint("192.168.0.2", 1234) ' Port 1234 at a

Di

See Also

 | socket_object.Connect

278

Networking Classes

tcpclient_object.Client Method

Returns the Socket Object associated with a TcpClient Object.

...tcpclient_object.Client

Prerequisites

None

Parame

Remark

nce all I/O is performed on Sockets, this method allows the Socket associated with a
TcpClient object to be accessed.

Examples

Dim tc As New TcpClient(ep)

Networ

ters

None

s

Si

Dim sock As Socket
sock = tc.Client

See Also

king Classes | udpclient_object.Client

279

GPL Dictionary Pages

tcpclient_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

280

Networking Classes

New TcpListener Constructor

Constructor for creating a TcpListener Object that allows a TCP server to be created.

New TcpListener (endpoint)

Prerequisites

None

Parameters

endpoint

An IPEndPoint Object that contains the IP address and port identifying
the local endpoint for connections accepted by this TCP server. The IP

Remark

s constructor creates a new TcpListener Object and creates the underlying Socket.
g for connections until the Start method is called. These

bjects are the basis for implementing TCP servers.

Exampl

 IPEndPoint("", 1234) ' Listen on port 1234
As New TcpListener(ep) ' Create listener object

See Also

Networking Classes

address of this endpoint is ignored since GPL controllers only have a
single IP address. The port number determines the port on which the
server listens.

s

Thi
It does not actually begin listenin
O

es

Dim ep As New
Dim tl

 | tcplistener_object.Start

281

GPL Dictionary Pages

tcplistener_object.AcceptSocket Method

w Socket Object for performing I/O on that
connection.
Accepts a TCP connection and returns a ne

...tcplistener_object.AcceptSocket

Prerequisites

The TCP listener associated with the tcplistener_object should have already been
d.

Parame

ne

Remark

If any network errors occur, this method throws an Exception.

Examples

m ep As New IPEndPoint("", 1234) ' Listen on port 1234

ct

sock = tl.AcceptSocket

starte

ters

No

s

This method is used by a TCP server to accept a connection request from a remote TCP
client. It creates a new Socket for performing I/O with that client. If no connection
requests are pending, this method blocks until one is received. To avoid blocking, use the
Pending property before calling AcceptSocket.

Di
Dim tl As New TcpListener(ep) ' Create listener obje
Dim sock As Socket
tl.Start

See Also

Networking Classes | tcplistener_object.Pending

282

Networking Classes

tcplistener_object.Close Method

sociated with a Socket, TcpListener, TcpClient, or
UdpClient Object.
Closes the network connection as

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

s

Remark

e network connection and free up resources.
 is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
ctually closed.

Exampl

m tl As New TcpListener(ep)
m sock As Socket

...

See Also

Networking Classes

None

Parameter

None

s

The Close method may be used to close th
If it
is a

If the Socket is not currently open, no error occurs.

es

Di
Di

tl.Close
sock.Close

283

GPL Dictionary Pages

tcplistener_object.Pending Property

re any TCP connection requests pending. Gets a Boolean value that indicates if there a

...tcplistener_object.Pending

Prerequisites

The TCP listener associated with the tcplistener_object must have already been started.

Remarks

This pro
request se. If
there is ocket method to accept it.

any network errors occur, this property returns False.

Exampl

 tl As New TcpListener(ep) ' Create listener object
 sock As Socket

.Start

 sock = tl.AcceptSocket
End If

Parameters

None

perty is used by a TCP server to test if there are any pending connection
s for a TcpListener Object. If so, it returns True. Otherwise it returns Fal
a pending request, call the AcceptS

If

es

Dim
Dim
tl
If tl.Pending Then

See Also

Networking Classes | tcplistener_object.AcceptSocket

284

Networking Classes

tcplistener_object.Start Method

Start listening for TCP connection requests.

tcplistener_object.Start

Prerequisites

None

Parameters

ests are received by using the Pending
property. After a request is received, it is accepted by calling the AcceptSocket method.

er you accept a connection request, you can call the Stop method to cease accepting
connection requests if you wish. Executing the Stop method does not effect

ur ability to continue to service datagrams for connections that have already been

s occur, this method throws an Exception.

Dim tl As New TcpListener(ep) ' Create listener object
Dim sock As Socket
tl.Start
sock = tl.AcceptSocket

See Also

Networking Classes

None

Remarks

This method is used by TCP servers to start listening for connection requests from
remote TCP clients. You can test if any requ

Aft
any further
yo
established.

If any network error

Examples

 | tcplistener_object.AcceptSocket

285

GPL Dictionary Pages

tcplist

Stop listening for TCP connection requests.

ener_object.Stop Method

tcplistener_object.Stop

Prerequi

ethod is used by TCP servers when they are done listening for connection
s from remote TCP clients. Executing this method does not effect your ability to

ntinue to service datagrams for connections that have already been established.

No error occurs if the listener is not active.

Examples

er object
Dim sock As Socket

Start
k = tl.AcceptSocket

tl.Stop

See Als

Networ

sites

None

Parameters

None

Remarks

This m
request
co

Dim tl As New TcpListener(ep) ' Create listen

tl.
soc

o

king Classes | tcplistener_object.Start

286

Networking Classes

New UdpClient Constructor

Constructor for creating a UdpClient Object.

New UdpClient (endpoint)

Prerequ

Parame

. If the port is non-zero, only datagrams to
the specified port can be received.

Remark

This cons ates a new UdpClient Object and create ng Socket. No
network I/O is generated by this method.

Examples

dPoint("", 1234) ' Po
Dim uc As New UdpClient(ep) ' Create a socket for UDP communications

See Als

Networking Classes

isites

None

ters

endpoint

An optional IPEndPoint Object that contains the IP address and port
identifying the local endpoint for datagrams recognized by this UDP
Socket. The IP address of this endpoint is ignored since GPL controllers
only have a single IP address

s

tructor cre s the underlyi

Dim ep As New IPEn rt 1234

o

 | udpclient_object.Client

287

GPL Dictionary Pages

udpclient_object.Client Method

Returns the Socket Object associated with a UdpClient Object.

...udpclient_object.Client

Prerequisites

None

Parameters

None

Remarks

Since all I/O is performed on Sockets, this method allows the Socket associated with a
UdpClient Object to be accessed.

Examples

Dim tc As New UdpClient(ep)
Dim sock As Socket
sock = tc.Client

See Also

Networking Classes | tcpclient_object.Client

288

Networking Classes

udpclient_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequ

Parame

None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Exampl

See Als

Networ

isites

None

ters

es

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

o

king Classes

289

Profile Class
Profile Class Summary

The following pages provide detailed information on the properties and methods of the
Profile Class. This class defines the attributes of objects that are used to specify the
performance parameters for a typical motion. That is, a Profile Object contains speed,
acceleration, deceleration, in range criteria and other specifications that dictate how a
motion is to be performed. The basic motion instruction, Move.Loc, takes as its two
arguments a Profile Object and a Location Object. The Location Object specifies the
destination for the robot motion and the Profile Object specifies how the robot is to get to
the destination.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, for numeric
properties and methods of the Profile Class, it is not necessary to have different
variations of these members to deal with the different possible mixes of input parameter
data types. Also, as appropriate, the properties and methods generally produce results
that are formatted as Double’s. These results will automatically be converted to smaller
data types as necessary, e.g. Double -> Integer, and will not generate an error so long
as numeric overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description

profile_obj.Speed Property Sets and gets peak motion speed specified
as a percentage of the nominal speed.

profile_obj.Speed2 Property

Sets and gets the secondary peak motion
speed specification as a percentage of their
nominal speeds for selected axes during
Cartesian motions.

profile_obj.Accel Property
Sets and gets peak motion acceleration
specified as a percentage of the nominal
acceleration.

profile_obj.Decel Property
Sets and gets peak motion deceleration
specified as a percentage of the nominal
deceleration.

profile_obj.AccelRamp Property Sets and gets duration for ramping up to the
peak acceleration, specified in seconds.

profile_obj.DecelRamp Property Sets and gets duration for ramping up to the
peak deceleration, specified in seconds.

profile_obj.Straight Property Sets and gets Boolean indicating if the robot
is to follow a straight-line path.

profile_obj.InRange Property

Sets and gets constraint that specifies if the
robot should be stopped at the end of the
motion and when the robot is close enough to
the final destination to be considered at its
final position.

profile_obj.Text Property Sets and gets a String value not used by
GPL. Available for general use by

290

Profile Class

applications.
profile_obj.Clone Method Method that returns a copy of the profile_obj.

291

GPL Dictionary Pages

profile

 nominal

_object.Accel Property

Sets and gets the peak motion acceleration defined as the percentage of the
acceleration.

profile_object.Accel = <new_value>
-or-
...profile_object.Accel

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Accel property defines the peak acceleration
that the motion can achieve. An Accel value of 100 corresponds to the nominal (100%)
acceleration for the specified type of motion. The Accel value can range from 1.0 up to a
maximum value permitted for the robot. For a Straight-line motion, the acceleration is
computed along the path and about the Cartesian rotational angles defined by the robot’s
kinematic module. For joint motions, the acceleration percentage is applied to the joint
angles.

The acceleration that the robot actually achieves for a given motion may be different than
the Accel value for a number of reasons: if an AccelRamp (s-curve profile) value is
specified, the motion may not be long enough to ramp up to the specified acceleration;
the Accel value may be limited by the maximum permitted Accel value; or the Accel
value may be automatically scaled if the Parameter Database “Couple %accel/%decel to
%speed” parameter is set. The Parameter DB value is a convenience feature that
automatically scales the specified Accel and Decel values with the Speed so that slow
motions have gentler accelerations and decelerations and fast motions accelerate and
decelerate as quickly as possible.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Accel parameter only
needs to be set if you wish to deviate from the default value.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Accel = 50 ' Only accelerate at 50% of nominal rate
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

292

Profile Class

See Also

Profile Class | profile_object.AccelRamp | profile_object.Decel | profile_object.DecelRamp

293

GPL Dictionary Pages

profile_object.AccelRamp Property

s. Sets and gets the duration for ramping up to the peak acceleration, specified in second

profile_object.AccelRamp = <new_value>
-or-
...profile_object.AccelRamp

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method

Parameters

None

Remarks

When generating a motion segment, the AccelRamp property specifies how long, in

s
idal acceleration curve, which is often referred to as an s-curve profile.

e

hile
,

The actual acceleration ramp time for a given motion may be different than the

ter Database “Couple
%accel/%decel to %speed” parameter is set. The Parameter DB value is a convenience

ture that automatically scales the specified AccelRamp and Accel values with the
Speed so that slow motions have gentler accelerations with shorter ramp times and fast

otions accelerate more quickly but have longer ramp times.

 default values
mp

and the specified motion segment is generated.

seconds, its takes for the Accel to achieve its specified value. Likewise, this time is also
used for ramping the Accel down to zero. If the AccelRamp time is set to zero, at the
start of a motion, the Accel command instantaneously jumps up to its specified value and
then, at the end of acceleration period, instantaneously drops down to zero. A zero
AccelRamp time corresponds to a square wave acceleration curve and commands an
infinite jerk, i.e. rate of change of the acceleration. A non-zero AccelRamp time produce
a trapezo

S-curve acceleration and deceleration profiles limit the impact of starting and stopping
motions and help to reduce the excitation of resonances (or ringing) in the robot
structure. An s-curve profile can often reduce the settling time at the end of the motion
since each axes more smoothly glides into its final position with less oscillations. On th
other hand, an s-curve profile will lengthen the planned duration of a motion since the
average acceleration and deceleration will be less than a square wave profile. So, w
most robots will benefit from s-curve profiles, for low accelerations or for very stiff robots
a square wave acceleration profile may be more beneficial.

AccelRamp value for a number of reasons: if the motion is short, there may not be
sufficient time to ramp all of the way up to the Accel value; or the AccelRamp value may
be automatically scaled by with the Accel value if the Parame

fea

m

When a New Profile is created, its properties are automatically set to the
specified in the controller’s Configuration Database. Therefore, the AccelRa
parameter only needs to be set if you wish to deviate from the default value.

294

Profile Class

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Accel = 50 ' Only accelerate at 50% of nominal rate
prof1.AccelRamp = 0.1 ' Take 0.1 sec to achieve 50% nominal accel
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

See Also

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.DecelRamp

295

GPL Dictionary Pages

profile_object.Clone Method

Method that returns a copy of the profile_object.

...profile_object.Clone

Prerequi

Parame

e

Remarks

ects, if a program contains a simple assignment statement:

sites

None

ters

Non

For obj

object_1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent change o
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standa
means for performing this operation:

f

rd

object_1 = object_2.Clone

Exampl

See Also

Profile

es

Dim prof1 As New Profile ' Create new profile set to default values
Dim prof2 As Profile ' Create new profile with no data allocated
prof1.Decel = 25 ' Only decelerate at 25% of nominal rate
prof2 = prof1.Clone ' Makes a copy of prof1 data
prof2.Accel = 50 ' Doesn’t affect prof1 data

Class

296

Profile Class

profile_object.Decel Propert

ominal

y

Sets and gets the peak motion deceleration defined as the percentage of the n
deceleration.

profile_object.Decel = <new_value>
-or-
...profile_object.Decel

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Decel property defines the peak deceleration
that the motion can achieve. An Decel value of 100 corresponds to the nominal (100%)
deceleration for the specified type of motion. The Decel value can range from 1.0 up to a
maximum value permitted for the robot. For a Straight-line motion, the Deceleration is
computed along the path and about the Cartesian rotational angles defined by the robot’s
kinematic module. For joint motions, the deceleration percentage is applied to the joint
angles.

The deceleration that the robot actually achieves for a given motion may be different than
the Decel value for a number of reasons: if an DecelRamp (s-curve profile) value is
specified, the motion may not be long enough to ramp up to the specified deceleration;
the Decel value may be limited by the maximum permitted Decel value; or the Decel
value may be automatically scaled if the Parameter Database “Couple %accel/%decel to
%speed” parameter is set. The Parameter DB value is a convenience feature that
automatically scales the specified Accel and Decel values with the Speed so that slow
motions have gentler accelerations and decelerations and fast motions accelerate and
decelerate as quickly as possible.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Decel parameter only
needs to be set if you wish to deviate from the default value.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Decel = 25 ' Only decelerate at 25% of nominal rate
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

See Also

297

GPL Dictionary Pages

Profile Class | profile_object.Accel | profile_object.AccelRamp | profile_object.DecelRamp

298

Profile Class

profile_object.DecelRamp Property

Sets and gets the duration for ramping up to the peak deceleration, specified in seconds.

profile_object.DecelRamp = <new_value>
-or-
...profile_object.DecelRamp

Prerequi

s a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the DecelRamp property specifies how long, in
seconds, its takes for the Decel to achieve its specified value. Likewise, this time is also
used for ramping the Decel down to zero. If the DecelRamp time is set to zero, at the
start of the motion deceleration period, the Decel command instantaneously jumps up to
its specified value and then, at the end of the motion, instantaneously drops down to
zero. A zero DecelRamp time corresponds to a square wave deceleration curve and
commands an infinite jerk, i.e. rate of change of the deceleration. A non-zero DecelRamp
time produces a trapezoidal deceleration curve, which is often referred to as an s-curve
profile.

S-curve acceleration and deceleration profiles limit the impact of starting and stopping
motions and help to reduce the excitation of resonances (or ringing) in the robot
structure. An s-curve profile can often reduce the settling time at the end of the motion
since each axes more smoothly glides into its final position with less oscillations. On the
other hand, an s-curve profile will lengthen the planned duration of a motion since the
average acceleration and deceleration will be less than a square wave profile. So, while
most robots will benefit from s-curve profiles, for low decelerations or for very stiff robots,
a square wave deceleration profile may be more beneficial.

The actual deceleration ramp time for a given motion may be different than the
DecelRamp value for a number of reasons: if the motion is short, there may not be
sufficient time to ramp all of the way up to the Decel value; or the DecelRamp value may
be automatically scaled by with the Decel value if the Parameter Database “Couple
%accel/%decel to %speed” parameter is set. The Parameter DB value is a convenience
feature that automatically scales the specified DecelRamp and Decel values with the
Speed so that slow motions have gentler decelerations with shorter ramp times and fast
motions decelerate more quickly but have longer ramp times.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the DecelRamp
parameter only needs to be set if you wish to deviate from the default value.

sites

Takes effect when the profile_object is passed a

299

GPL Dictionary Pages

Examples

reate new profile set to default values
prof1.Decel = 25 ' Only decelerate at 25% of nominal rate

 ' location, loc1 with performance “prof1”

See Als

Profile Class

Dim prof1 As New Profile ' C

prof1.DecelRamp = 0.1 ' Take 0.1 sec to achieve 50% nominal decel
Move.Loc (loc1, prof1) ' Perform motion to previously defined

o

 | profile_object.Accel | profile_object.AccelRamp| profile_object.Decel

300

Profile Class

profile_object.InRange Property

Gets and sets the constraint that specifies if the robot should be stopped at the end of the
motion and when the robot is close enough to the final destination to be considered at its
final position.

profile_object.InRange = <new_value>
-or-
...profile_object.InRange

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

Whenever the robot picks up a part or places it at its final destination, the robot should
normally be brought to a complete stop and any small position errors should be
eliminated (nulled) before the part is grasped or released. Conversely, if the robot is
moving through intermediate (via) positions simply to clear obstacles, bringing the robot
to a stop at these positions increases the cycle time without providing any benefit. Also,
when the robot is to be brought to a stop, there are instances where it is beneficial to
spend more time reducing the final positioning errors to the tightest possible position
constraint for the robot and other times when a looser constraint is acceptable to save
cycle time.

The InRange property specifies if the robot is to stop at the end of motion and, if so, how
tight a position error constraint should be applied to determine when the robot has
reached its final destination. The value of this property is interpreted as follows:

InRange Value Interpretation

<0 Don’t stop the robot at the end of the motion. Blend with the next
motion if possible.

0 Stop the robot at the end of the motion, but do not apply any position
error constraints. This means that as soon as the final set point
command has been issued to the servos, GPL will signal that the
motion has been completed.

Small number >0 Stop the robot at the end of the motion, but use a very small (loose)
position error constraint. This will ensure that the robot has
approximately reached the specified destination before GPL considers
that the motion has been completed.

Large number <=
100

Stop the robot at the end of the motion and apply a stringent position
error constraint. If this value is 100, the robot will have to be within its
tightest error envelope before GPL considers the motion completed.

301

GPL Dictionary Pages

Values greater than 100 can be specified, but these require smaller
error tolerances than are recommended by the manufacturer of the
robot.

When a New Profile is created, its
values. Normally, the prope

 properties are automatically set to reasonable default
InRange rty defaults to 100. Therefore, the InRange

Examples

rof1 As New Profile ' Create new profile set to default values
 ' Stop at EOM, reduced requirement for inrange

 ' location, loc1

See Also

Profile

parameter only needs to be altered if this default value is not appropriate.

Dim p
prof1.InRange = 10
Move.Loc (loc1, prof1) ' Perform motion to previously defined

Class

302

Profile Class

profile_object.Speed Property

Sets and gets the peak motion speed specified as a percentage of the nominal speed.

profile_object.Speed = <new_value>
-or-
...profile_object.Speed

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Speed property defines the peak speed that the
motion can achieve. A Speed value of 100 corresponds to the nominal (100%) speed for
the specified type of motion. The Speed value can range from 1.0 up to a maximum
value permitted for the robot. For a Straight-line motion, the speed is computed along
the path and about the Cartesian rotational angles defined by the robot’s kinematic
module. For joint motions, the speed percentage is applied to the joint angles.

While 100% is normally the maximum operating speed recommended by the robot
manufacturer, there are times that a greater Speed setting may be beneficial. Often, the
100% Speed setting is established for when the robot is carrying its maximum payload.
Also, 100% Speed may be the sustained maximum speed setting, but higher burst
speeds may be permitted.

The speed that the robot actually achieves for a given motion may be different than the
specified Speed value for a number of reasons: the motion may not be long enough to
ramp up to the specified speed given the available acceleration; the Speed value may be
limited by the maximum permitted Speed value; or the operator may have set a slow
“Test Speed” that scales down the specified Speed value.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Speed parameter
only needs to be set if you wish to deviate from the default value.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Speed = 50 ' Only go at half of the rated speed
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

See Also

303

GPL Dictionary Pages

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.Speed2

304

Profile Class

profile_object.Speed2 Property

Sets and gets the secondary peak motion speed specification as a percentage of their
nominal speeds for selected axes during Cartesian motions.

profile_object.Speed2 = <new_value>
-or-
...profile_object.Speed2

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified Cartesian motion segment is generated.

Parameters

None

Remarks

For all joint interpolated and the majority of Cartesian motions, the standard Speed
property is used to control the peak speed of the robot. However, for certain robot
geometries and certain Cartesian (straight-line) motions, it is beneficial to have a
secondary property to control motion speeds.

The Speed2 property only applies to Cartesian motions and is generally used to specify a
secondary speed setting to control the peak rotation speed for a motion. If Speed2 is
zero, both the peak translation and rotation are governed by the Speed property. If
Speed2 is non-zero, the peak Cartesian translation motion speed is limited by the Speed
property and the peak Cartesian rotation speed is limited by Speed2. For a such a
motion, the speed value that is more limiting will govern the overall motion timing.

For most motions, Speed2 should be set to 0. However, if your robot has a wrist that can
rotate very quickly and it is unpredictable as to whether the motion will be primarily a
translation or a rotation, Speed2 can be set low to limit the speed of a large rotation
without negatively impacting motions that are primarily translations.

For some special kinematic modules, Speed2 may also be applied to other degrees-of-
freedom. Please see the Kinematic Library for specific information on these special uses.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Straight = True
prof1.Speed2 = 25 ' Limit Cartesian rotation speed
prof1.Speed = 100 ' Keep translation speed at full
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

305

GPL Dictionary Pages

See Also

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.Speed

306

Profile Class

profile_object.Straight Property

Sets and gets Boolean indicating if the robot’s tool tip is to follow a straight-line path or if
the path will be a function of the robot’s geometry.

profile_object.Straight = <new_value>
-or-
...profile_object.Straight

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

For certain motions, the path of the robot’s tool or the part being held by the robot is
important and moving along a straight line is desirable. In other cases, the path may not
be important. In the latter case, the robot may move faster if the path is defined by
interpolating between the joint angles of the initial and final Locations.

Straight is False, the system will interpolate in joint angles to move
the robot to its destination.

oint interpolated motions.

However, if the Cartesian robot has a rotary theta axis or if the robot is a non-Cartesian
mechanism with rotary or parallel axes uite different.

In situatio the path is no t, joint interpolate uires less
 the robo mov

a New Pro ted,

Examples

Dim prof1 As New Profile ' Create new

Straight True
 ' Perform mo

 ' location, loc1 by moving along a straight path

See Als

If the Straight property is True, by making use of the system’s built-in knowledge of the
robot’s geometry (i.e. kinematics), the robot’s tool tip is moved along a straight-line path
in Cartesian space. If

If the robot is a simple 1, 2, or 3 degree-of-freedom Cartesian mechanism with all linear
axes, there is no difference between straight-line and j

, the two motion types are q

ns where t importan d motions req
processor time and t will often e more quickly.

By default, when file is crea Straight is set to False.

 profile set to default values

tion to previously defined
prof1. =
Move.Loc (loc1, prof1)

o

307

GPL Dictionary Pages

Profile Class

308

Profile Class

profile_object.Text Property

Sets and gets a String associated with a Pro
and is provided for use by application program

file Object. This field is not used by GPL
s.

profile_object.Text = <string_value>
-or-
...profile_object.Text

Prerequisites

None

Parameters

None

Remarks

This Text property allows an application programmer to associate an arbitrary String
value with a Profile object. For example, this can be used to document how the object
is employed or to store a description of the object that is subsequently displayed when
the object is accessed or written.

Examples

Dim prof1 As New Profile ' Create new Profile object
prof1.Text = "This is my profile"
Console.WriteLine(prof1.Text)

See Also

Profile Class | location_object.Text | refframe_object.Text

309

Reference Frame Class
RefFrame Class Summary

e. If one or more Location Objects are defined with
, when the position and/or orientation of the reference

frame are altered, the po entation of all associated Location Objects are

hen picking up or placing several parts that are at
fixed positions relative to a base plate or when accessing pallets that have parts arranged

ctangular grid or when the robot is to operate on a conveyor belt. The assembly of
circuit board is a common example of the first situation. When a PCB enters into

a machi ientation of the PCB is
first c
rep e

onents to be placed are automatically adjusted. The use of robots in the laboratory
ation industry provides a good example of the use of pallet reference frames. In

this case, samples to be tested are placed on a tray and arranged in a rectangular grid
. After the tray is located and its associated reference frame updated, the

RefFrame Class provides a simple means for stepping from sample to sample. Finally,
nveyor reference frames are utilized to implement the GPL conveyor tracking

his feature allows locations to be specified relative to a moving conveyor

or

nal types of reference frames may

methods utilized for each type of reference frame.

The following pages provide detailed information on the properties and methods of the
reference frame class, RefFram
respect to a RefFrame Object

sition and ori
automatically adjusted as well.

RefFrame Objects are very useful w

in a re
a printed

ne for mounting electronic components, the position and or
 ac urately determined, typically using a vision system. The reference frame that
res nts the PCB is then updated and all of the positions and orientations of the

comp
autom

pattern

co
capability. T
line. This capability is important in the packaging industry where parts are often
transported on conveyors.

To allow different types of static and dynamic reference frames to be represented, the
RefFrame Object includes a Type property. At present, only basic, pallet and convey
reference frames are supported. In the future, additio
be added.

In general, each type of reference frame only makes use of a subset of the properties
and methods of the RefFrame Class. The tables below summarize the properties and

Basic Reference Frame

Member Type Description

refframe_obj.Type Property Set to 0 to indicate a basic reference frame.

refframe_obj.Loc Property
Loc.Pos is set equal to the position and
orientation of the reference frame by a GPL
procedure.

Method
Returns the absolute (“total”) position and
orientation for any type of reference frame refframe_obj.Pos
object.

refframe_obj.PosWrtRef Method frame w
Returns the po

hile ign
sition for any type of reference
oring any further reference

frames.

refframe_obj.Text Property
Sets and gets a String value not used by
GPL. Available for general use by
applications.

310

Reference Frame Class

Pallet Reference Frame

Member Type Description

refframe_obj.Type Property Set to 1 to indicate a pallet reference
frame.

refframe_obj.Loc Property

Loc.X, Y and Z define the position of the
first row, column and layer. The orientation
of the X, Y, and Z axes of Loc define the
direction for each row, column, and layer
respectively.

refframe_obj.Pos Method
Returns the absolute (“total”) position and
orientation for any type of reference frame
object.

refframe_obj.PosWrtRef Method
Returns the position for any type of
reference frame while ignoring any further
reference frames.

refframe_obj.Text Property
Sets and gets a String value not used by
GPL. Available for general use by
applications.

refframe_obj.PalletIndex Property Sets and gets the index for the next position
along the pallet row, column, or layer (1 to n).

refframe_obj.PalletMaxIndex Property Sets and gets the maximum position index
along the pallet row, column, or layer (1 to n).

refframe_obj.PalletNextPos Method Advances to the next pallet position.

refframe_obj.PalletOrder Property
Sets and gets the parameter that specifies the
order in which PlalletNextPos indexes along
the row, column, and layer indices.

refframe_obj.PalletPitch Property Sets and gets the step size for advancing along
each row, column, or layer.

refframe_obj.PalletRowColLay Method Sets the next pallet position row, column, and
layer indices in a single instruction.

Conveyor Reference Frame

Member Type Description

refframe_obj.Type Property Set to 2 to indicate a conveyor reference
frame.

refframe_obj.Loc Property
Not used. Conveyor reference frames
cannot be defined with respect to any other
reference frame.

refframe_obj.Pos Method
Returns the absolute (“total”) position and
orientation for any type of reference frame
object.

refframe_obj.PosWrtRef Method
Returns the position of the "nominal"
transformation for the associated conveyor
robot.

refframe_obj.Text Property
Sets and gets a String value not used by
GPL. Available for general use by
applications.

311

GPL Dictionary Pages

refframe_obj.ConveyorOffset Property Sets or gets the property that specifies the
zero position of the conveyor belt's encoder.

refframe_obj.ConveyorRobot Property

ets or gets the property that specifies the
dule that is interfaced to the belt

S
robot mo
encoder and contains the data that defines
the conveyor.

312

Reference Frame Class

refframe_object.ConveyorOffset Property

 or gets the property that specifies the zero position
of the conveyor belt's encoder.
For a conveyor reference frame, sets

refframe_object.ConveyorOffset= <encoder_offset>
-or-
… refframe_object.ConveyorOffset

Prerequisites

• The refframe_object must be a conveyor reference frame.
The Conveyor Tracking software license must be installed on the controller.

Parame

ne

Remark

to effectively zero the encoder value. This
permits a motion program to be taught in one region of the conveyor and then reused in

lt

When the encoder is zero'ed by setting the ConveyorOffset equal to the encoder's

fset is specified in u

If the conveyor encoder has rollover enabled, the system will automatically internally
adjust the ConveyorOffset to ensure that its value is within one rollover value of the
instantaneous encoder reading.

Examples

Dim belt1 As New RefFrame
Dim loc1 As New Location
belt1.Type = 2 ' Conveyor reference frame
belt1.ConveyorRobot = 2 ' 2nd robot is conveyor
belt1.ConveyorOffset
loc1.RefFrame = b
loc1.Here
If (l nveyor
 C .Write
End If

•

ters

No

s

Since the raw reading of a conveyor’s encoder can increase almost without limit, an
offset to the encoder reading is provided

another region of the conveyor as the belt continues to advance. Whenever the be
encoder's value is read, the ConveyorOffset is automatically subtracted from the
encoder's instantaneous reading.

current reading, the position and orientation of the belt will be equal to the "Nominal"
value defined in the conveyor's robot module (DataID 16060).

The ConveyorOf

nits of millimeters.

 = Robot.WhereAngles(2).Angle(1)
elt1 ' Zero encoder
 ' Test current robot loc
Limit(0) <> 0) Then
Line("Out of range")

oc1.Co
onsole

313

GPL Dictionary Pages

See Also

RefFrame Class | location_object.ConveyorLimit | refframe_object.ConveyorRobot

314

Reference Frame Class

refframe_object.ConveyorRobot Property

For a conveyor reference frame, sets or gets the property that specifies the robot module
that is interfaced to the belt encoder and contains the data that defines the conveyor.

refframe_object.ConveyorRobot= <robot_number>
-or-
… refframe_object.ConveyorRobot

Prerequisites

nce frame.
• The Conveyor Tracking software license must be installed on the controller.

Parameters

None

Remarks

Most of the information that a conveyor reference frame computes is derived from the
ata specified by a conveyor robot. A conveyor robot module defines the interface that is

connected to the belt encoder and contains its "nominal" transformation. The nominal
transformation defines the direction of travel of the belt and its approximate center point.
Since a controller can be interfaced to multiple conveyor belts, the ConveyorRobot
property provides the means for associating a reference frame with a particular conveyor
belt.

This property must be set before the position of a conveyor reference frame can be
accessed.

Exampl

Dim belt1 As New RefFrame
Dim loc1 As New Location

Type = 2 ' Conveyor reference frame

RefFrame = belt1 ' Zero encoder

See Als

RefFram

• The refframe_object must be a conveyor refere

d

The robot_number can range for 1 to N, where N is the total number of robots that are
configured in a controller.

es

belt1.
belt1.ConveyorRobot = 2 ' 2nd robot is conveyor
belt1.ConveyorOffset = Robot.WhereAngles(2).Angle(1)
loc1.
loc1.Here ' Test current robot loc
If (loc1.ConveyorLimit(0) <> 0) Then
 Console.WriteLine("Out of range")
End If

o

e Class | location_object.ConveyorLimit | refframe_object.ConveyorOffset

315

GPL Dictionary Pages

refframe_object.Loc Property

he nominal
he frame.

Sets and gets a reference frame’s Location Object, which typically contains t
position and orientation of t

refframe_object.Loc = <Cartesian_location_object>
-or-
… refframe_object.Loc

Prerequisites

None

Parameters

None

Remarks

Most reference frame types have an associated Cartesian Location Object that is
pointed to by the Loc property. Typically, the nominal position and orientation of the
reference frame is stored in this Location although the specific interpretation of this data
is a function of the reference frame type.

The refframe_object.Loc.RefFrame property points to the next reference frame if
refframe_object is itself relative to another frame. For conveyor reference frames, Loc is
unused and Loc.RefFrame must always be null since conveyor reference frames cannot
be relative to another reference frame of any type.

The following table describes how to interpret the position and orientation data stored in
the Cartesian Location Object pointed to by refframe_object.Loc.

RefFrame Type refframe_object.Loc Contents

Basic

Contains the reference frame position and orientation. So,
refframe_object.Loc.Pos represents the total position of
refframe_object and refframe_object.Loc.PosWrtRef is the position
and orientation of refframe_object with respect to any subsequent
reference frames. If a program wishes to change the position and
orientation of a basic frame, it must do so via refframe_object.Loc.
However, if a program wishes to read the reference frame position and
orientation, it is normally a better practice to use the
refframe_object.Pos and refframe_object.PosWrtRef methods. These
last two methods will return the current total and relative position for
any type of reference frame.

Pallet

The XYZ position of the refframe_object.Loc defines the position of
row 1, column 1, and layer 1 of the pallet. The orientation of
refframe_object.Loc defines the direction of the rows, columns, and
layers of the pallet. The X-axis of refframe_object.Loc defines the
index direction for a row. The Y-axis defines the index direction for a

316

Reference Frame Class

column. The Z-axis defines the index direction for layers.

Co

module. This permits the direction of travel and nominal position of a
conveyor to be taught once, automatically loaded when the controller is

nveyor

The Loc property is not used for conveyor reference frames. The
eyor reference frame is dynamically

 the associated conveyor robot

restarted, and referenced by multiple conveyor reference frames. The
Loc.PosWrtRef must always be NULL since conveyor reference

e. The
refframe_object.Pos and refframe_object.PosWrtRef methods should

ous and nominal positions of a
conveyor reference frame.

"nominal" position for a conv
extracted from the value stored in

frames cannot be relative to any other reference fram

be used to access the instantane

As a convenience, when a new reference frame object is created, a Cartesian Location
nce frame. By default, this

ro.

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc
ref1.Lo
loc1.Re
loc1.XY oc1 poswrtref
Console.Writeline(loc1.Pos.X) ' Displays 107.07

nsole.Writeline(loc1.Pos.Y) ' Displays 97.07
nsole.Writeline(loc1.Pos.Z) ' Displays -80

See Als

RefFram

Object is automatically created and linked to the refere
Location will have its position and orientation angles set to ze

Examples

1 As New Location
c.XYZ(100,90,-80,0,0,45) ' Define base frame
fFrame = ref1 ' Define loc1 wrt ref1
Z(10,0,0,0,180,0) ' Define l

Co
Co

o

e Class | refframe_object.Pos| refframe_object.PosWrtRef

317

GPL Dictionary Pages

refframe_object.PalletIndex Property

For a pallet reference frame, sets or gets the row, column or layer index for the next grid
position to be accessed.

refframe_object.PalletIndex(row_col_lay) = <next_index>
-or-
… refframe_object.PalletIndex(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row_col_lay

A required numerical expression that is equal to 1 if the row index is to
be accessed, 2 if the column index is to be accessed, or 3 if the layer
index is to be accessed.

Remarks

This property permits a program to set or get the next row, column, or layer index to be
accessed in a pallet reference frame. Each index can range from 1 to the maximum value
for that dimension as specified by the object’s PalletMaxIndex property. The row,
column, and layer indices are always positive integer numbers. If you wish to step in a
negative direction, the appropriate PalletPitch property for the refframe_object can be
set to a negative number.

If you wish to set all 3 index values at once, you can make use of the object’s
PalletRowColLay method. If you want to just advance to the next logical pallet position,
the PalletNextPos method can be invoked.

By default, when a new pallet reference frame is created, the pallet indices are set to 1,
1, 1.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletIndex(2) = 2 ' Set grid (1,2,1)
Console.Writeline(loc1.Pos.X) ' Displays 100

318

Reference Frame Class

Console.Writeline(loc1.Pos.Y) ' Displays 70

See Also

RefFrame Class | refframe_object.PalletMaxIndex | refframe_object.PalletNextPos|
refframe_object.PalletRowColLay

319

GPL Dictionary Pages

refframe_object.PalletMaxIndex Property

For a pallet reference frame, sets or gets the number of rows, columns, or layers in the
pallet.

refframe_object.PalletMaxIndex(row_col_lay) = <maximum_index>
-or-
… refframe_object.PalletMaxIndex(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row_col_lay

A required numerical expression that is equal to 1 if the number of rows
is to be accessed, 2 if the number of columns is to be accessed, or 3 if
the number of layers is to be accessed.

Remarks

This property allows a program to set or get the number of rows, columns or layers for a
given pallet reference frame. The number of rows, columns or layers is specified by an
integer number greater than or equal to 1.

To specify a specific pallet position, the PalletIndex properties must be set to at least 1
and cannot be greater then the applicable maximum values defined by the
PalletMaxIndex property.

By default, when a new pallet reference frame is created, the maximum pallet indices are
each set to 1.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position
Console.Writeline(loc1.Pos.X) ' Displays 110
Console.Writeline(loc1.Pos.Y) ' Displays 90

See Also

320

Reference Frame Class

RefFrame Class | refframe_object.PalletIndex| refframe_object.PalletRowColLay

321

GPL Dictionary Pages

reffram

et reference frame, advances the pallet position to the next logical position.

e_object.PalletNextPos Method

For a pall

refframe_object.PalletNextPos

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

None

Remarks

Given the current pallet position and the PalletOrder, this method advances the pallet to
the next logical position. For example, if the current pallet position is at the last element in
a row, 3rd column position, and 2nd layer, and the PalletOrder indicates that the pallet
should be incremented by row, column and layer, PalletNextPos will advance to the 1st
row element, 4th column element and 2nd layer.

If the initial pallet position is at the last row, column, and layer position, PalletNextPos
changes the pallet position indices to 1,1,1.

If you want to randomly select the next pallet position, a program can utilize PalletIndex
or PalletRowColLay instead of the PalletNexPos method.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size
ref1.PalletOrder = 2 ' Col, row, layer order

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(3,1,1) ' Set grid position
ref1.PalletNextPos ' Advance to 3,2,1
Console.Writeline(loc1.Pos.X) ' Displays 120
Console.Writeline(loc1.Pos.Y) ' Displays 70

See Also

322

Reference Frame Class

RefFrame Class |refframe_object.PalletIndex| refframe_object.PalletOrder |
refframe_object.PalletRowColLay

323

GPL Dictionary Pages

refframe_object.PalletOrder Property

h
er indices are incremented.

For a pallet reference frame, sets or gets the parameter that specifies the order in whic
the row, column, and lay

refframe_object.PalletOrder = <indexing_order>
-or-
… refframe_object.PalletOrder

Prerequ

e_object must be a pallet reference frame.

Parame

None

Remarks

Normally, the rows and columns of a pallet are defined such that a layer of rows and
 the world coordinate system X-Y plane. If the rows and columns are

defined in such a manner, you may wish to increment from one pallet position to the next
in a diffe . For
example
increme
define th e incremented.

terpretation of this parameter is presented in the following table.

isites

The reffram

ters

columns lie in

rent order than the standard row first, then column, then layer pattern
, you may want to stack from the bottom layer to the top layer before
nting to the next row or column. The PalletOrder parameter allows a program to
e order in which the row, column, and layer indices ar

The in

PalletOrder Value Incrementing Order

0 Row, column, layer
1 Row, layer, column
2 Column, row, layer
3 Column, layer, row
4 Layer, row, column
5 Layer, column, row

By default, when a new pallet reference frame is created, the PalletOrder is set to 0
(row,column,layer).

Exampl

ref1.PalletPitch(1) = 10 ' Spacing along row
1.PalletPitch(2) = 20 ' Spacing along column

PalletMaxIndex(1) = 3 ' Define grid size

es

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base

ref
ref1.

324

Reference Frame Class

ref1. (2) = 3 ' Define grid size
ref1.PalletOrder = 2 ' Col, row, layer orde

PalletMaxIndex
r

See Als

RefFram

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(3,1,1) ' Set grid position
ref1.PalletNextPos ' Advance to 3,2,1
Console.Writeline(loc1.Pos.X) ' Displays 120
Console.Writeline(loc1.Pos.Y) ' Displays 70

o

e Class | refframe_object.PalletNextPos

325

GPL Dictionary Pages

refframe_object.PalletPitch Property

let.
For a pallet reference frame, sets or gets the step size (pitch) between adjacent rows,
columns, or layers in a pal

refframe_object.PalletPitch(row_col_lay) = <pitch_size>
-or-
… refframe_object.PalletPitch(row_col_lay)

Prerequ

 refframe_object must be a pallet reference frame.

Parame

row_col

 the column pitch is to be accessed, or 3 if the layer pitch is
to be accessed.

Remarks

Exampl

Dim loc1 As New Location

etMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1
ref1.PalletRowColLay(2,
Console.Writeline(loc1.Pos.X) ' Displays 110

sole.Writeline(loc1.Pos.Y) ' Displays 90

See Als

RefFram

isites

The

ters

_lay

A required numerical expression that is equal to 1 if the row pitch is to be
accessed, 2 if

This property allows a program to set or get the step size (pitch) between sequential
rows, columns or layers for a pallet reference frame. The step sizes are in units of
millimeters and can be both positive and negative real numbers.

es

Dim ref1 As New RefFrame ' Also allocates Loc

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.Pall

 ' loc1.PosWrtRef all 0’s
3,1) ' Set grid position

Con

o

e Class

326

Reference Frame Class

refframe_object.PalletRowColLay Method

For a pallet reference frame, sets the row, column, and layer indices for the next grid
position to be accessed.

refframe_object.PalletRowColLay(row, column, layer)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row

A required numerical expression that specifies the index for the next row
to be accessed, where the row number is interpreted as an integer value
that ranges from 1 to the maximum permitted row index for this pallet, i.e.
refframe_object.PalletMaxIndex(1).

column

A required numerical expression that specifies the index for the next
column to be accessed, where the column number is interpreted as an
integer value that ranges from 1 to the maximum permitted column index
for this pallet, i.e. refframe_object.PalletMaxIndex(2).

layer

A required numerical expression that specifies the index for the next
layer to be accessed, where the layer number is interpreted as an integer
value that ranges from 1 to the maximum permitted layer index for this
pallet, i.e. refframe_object.PalletMaxIndex(3).

Remarks

This is a convenience method that allows a program to explicitly set the row, column, and
layer indices for the next pallet element to be accessed. This method permits a program
to randomly set or reset the next element. For example, if values of 1,1,1 are specified as
the arguments to this method, the first pallet position will be accessed next.

By default, when a new pallet reference frame is created, the pallet indices are set to 1,
1, 1.

The operation performed by this method can also be accomplished by utilizing the
PalletIndex property once for each of the three pallet indices or the PalletNextPos
method can be invoked to advance to the next logical pallet position.

Examples

327

GPL Dictionary Pages

Dim ref1 As New RefFrame ' Also allocates Loc

 Change to pallet frame
Loc.XYZ

lumn

ref1.PalletMaxIndex(2) = 3 ' Define grid size

rtRef all 0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position

(loc1.Pos.X) ' Displays 110
e.Writeline(loc1.Pos.Y) ' Displays 90

See Als

lass

Dim loc1 As New Location

ref1.Type = 1 '
ref1. (100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along co
ref1.PalletMaxIndex(1) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosW

Console.Writeline
Consol

o

RefFrame C | refframe_object.PalletIndex| refframe_object.PalletMaxIndex|
refframe_object.PalletNextPos

328

Reference Frame Class

refframe_object.Pos Method

Returns a Cartesian Location equal to the current total position and orientation for any
type of RefFrame Object.

… refframe_object.Pos(location_object)

Prerequisites

None

Parameters

location_object

An optional Cartesian Location Object or a method or property that
returns a Cartesian Location Object value. This parameter is not
currently utilized but is included to support planned future reference
frame types.

Remarks

For any type of reference frame object, this method returns a Cartesian Location whose
value is equal to the current (instantaneous) total position and orientation of the frame
taking into account any additional linked reference frames. In the case of a “basic”
reference frame, the current location is equal to the contents of refframe_object.Loc.Pos.
In the case of a dynamic reference frame, such as a pallet, the current total position and
orientation is computed based upon the object properties, e.g. nominal location, current
row, column and layer numbers. In the case of a conveyor reference frame, the
instantaneous position of the conveyor belt is computed and returned. For a conveyor
reference frame, the X-axis of this value points along the direction of travel for the belt.

This method returns the reference frame’s total position and orientation that is equivalent
to the value used to compute the total position and orientation of a Cartesian Location
that is defined with respect to the reference frame. For example, if a Cartesian Location,
loc1, has its RefFrame pointer set equal to a reference frame, ref1, then loc1.Pos is
equal to:

ref1.Pos(dummy).Mul(loc1.PosWrtRef)

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim dum As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
Console.Writeline(ref1.Pos(dum).X) ' Displays 100
Console.Writeline(ref1.Pos(dum).Y) ' Displays 90
Console.Writeline(ref1.Pos(dum).Z) ' Displays -80

See Also

329

GPL Dictionary Pages

RefFrame Class | refframe_object.PosWrtRef

330

Reference Frame Class

refframe_object.PosWrtRef Method

ual to the current position and orientation of a
RefFrame Object ignoring any further reference frames.
Returns a Cartesian Location eq

… refframe_object.PosWrtRef(location_object)

Prerequi

n_object

An optional Cartesian Location Object or a method or property that
returns a Cartesian Location Object value. This parameter is not
currently utilized but is included to support planned future reference
frame types.

Remarks

ny additional
linked reference frames.

sites

None

Parameters

locatio

In general, this method returns a Cartesian Location whose value is equal to the current
position and orientation of the reference frame without taking into account a

RefFrame Type refframe_object.PosWrtRef

Basic Return PosWrtRef. s the contents of refframe_object.Loc.

Pallet

Return
object ayer
numb
frame

s the current pallet position and orientation based upon the
 properties, e.g. nominal location, current row, column and l
ers, without taking into consideration any linked reference
s.

Conveyor this value is typically defined approximately at the center of travel for
the belt. The nominal value for a conveyor is stored in the conveyor
robot module to permit this transformation to be taught once,
automatically loaded when the controller is restarted, and referenced
by multiple conveyor reference frames.

Return
the as ataID 16060). The X-axis of is value
points along the direction of travel of the belt and the XYZ position of

s the "Nominal" transformation for the conveyor as defined in
sociated conveyor robot (D

Exampl

Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
sole.Writeline(ref1.PosWrtRef(dum).X) ' Displays 100

Console.Writeline(ref1.PosWrtRef(dum).Y) ' Displays 90
nsole.Writeline(ref1.PosWrtRef(dum).Z) ' Displays -80

es

Dim ref1 As New RefFrame ' Also allocates Loc
Dim dum As New Location
ref1.
Con

Co

331

GPL Dictionary Pages

See Als

RefFrame Cl

o

ass | refframe_object.Pos

332

Reference Frame Class

refframe_object.Text Property

Sets and gets a String associated with a RefFrame Object. This field is not used by
GPL and is provided for use by application programs.

refframe_object.Text = <string_value>
-or-
...refframe_object.Text

Prerequi

Parame

Remark

layed

Examples

 ref1 ' Create new RefFrame object
ref1.Text = "This is my reference frame"
Console.W ef1.Text)

See Als

RefFra

sites

None

ters

None

s

This Text property allows an application programmer to associate an arbitrary String
value with a RefFrame object. For example, this can be used to document how the
object is employed or to store a description of the object that is subsequently disp
when the object is accessed or written.

Dim As New RefFrame

riteLine(r

o

me Class | location_object.Text | profile_object.Text

333

GPL Dictionary Pages

refframe_object.Type Property

Sets and gets the Integer Type of a RefFra
basic type or one of the special types of ref

me Object, which indicates if the object is a
erence frames.

refframe_object.Type = <new_Integer_value>
-or-
...refframe_object.Type

Prerequ

Parameters

Remarks

There are several different types of referenc represented by a
refframe_object. The Type property indicat

e possibl r th

isites

None

None

e frames that can be
es which type of reference frame is stored in
e Type property are as follows: a specific object. Th e values fo

Type Value Description

0 Basic RefFrame th ntation of the
referen e in

at stores the position and orie
ce fram the Loc Location.

1 Palle e th nal
rectangular grid of

t RefFram at defines a one, two or three-dimensio
positions that are sequentially indexed.

2

Conv ram
is equal to the insta belt.
Requires that the C
insta con

eyor RefF e whose value is dynamically computed and
ntaneous position of a conveyor
onveyor Tracking Software License be

troller. lled in the

For all reference frames, there are a few co ed and
mmon p nclu

addition, specific types of reference frames itional properties and methods
gful for a spe pe

me has a PalletO erty .

 attempt to a ope
rated.

RefFrame is created, its Typ

Examples

mmon properties that are always defin
de the Type, Loc, Pos and PosWrtRef. In

 may have add
accessible. These co roperties i

that are only meanin
reference fra

cific ty
rder prop

of refframe_object. For example, a pallet
 that is only relevant for that type of frame

In general, if you
an error will be gene

ccess a pr rty that is not relevant for a refframe_object,

When a “New” e is automatically set to 0, i.e. the basic type.

334

Reference Frame Class

Dim ref1 As New RefFrame ' Create new reference frame
Dim iType As Integer
iType = ref1.Type ' iType will be set to 0

See Also

RefFrame Class

335

Robot Class
Robot Class Summary

The following pages provide detailed information on the properties and methods of the
es access to the features and status of each robot
ent position of a robot, processes for establishing

e for each axes of each robot, functions for forcing an in-process
 to a halt, methods for setting and getting the robot's base and tool

offsets, etc.

The most important operations of the Robot Class are to associate a specific robot with
ific thread and to grant exclusive control of a robot to a thread. Most read-only

erations require that a statement either explicitly specify a robot or have a
ously Selected robot. For example, to read the current position of a robot, the
cted robot will be accessed if no robot is specified. More importantly, in order to

 or move a robot, a thread must first be Attached to a robot in order to gain
ive access to it.

 is standard in GPL, conversions between different arithmetic types, e.g. Integer,
Single, Double, are automatically performed as required. So, for numeric properties and

s
sults that are formatted as

Double’s. These results will automatically be converted to smaller data types as

l in the following sections.

global Robot Class. This class provid
configured in the system, e.g. the curr
the position referenc
motion to decelerate

a spec
robot op
previ
Sele
control
exclus

As

methods of the Robot Class, it is not necessary to have different variations of these
members to deal with the different possible mixes of input parameter data types. Also, a
appropriate, the properties and methods generally produce re

necessary, e.g. Double -> Integer, and will not generate an error so long as numeric
overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detai

Member Type Description

Robot.Attached Property exclusively controlled by a thread.
Sets and gets the number of the robot that is

Robot.Base Property Sets and gets the position and orientation
offset for the base of the robot.

Robot.CartMode Property
Gets an Integer that contains flag bits t
indicate if any special Cartesian trajectory
modes are active.

hat

Robot.Custom Property
s elements of a parameter array

whose interpretation is specific to each
kinematic module.

Sets and get

Robot.DefLinComp Method that are automatically applied

Defines internal table of motor encoder
"Linearity compensation" correction values

 to encoder
values.

Robot.Dest Property
Returns a Cartesian Location whose value is
equal to the originally planned final
destination of the previously executed motion.

Robot.DestAngles Property
Returns an Angles Location whose value is
equal to the originally planned final
destination of the previously executed motion.

336

Robot Class

Robot.Home Method Homes the Attached robot to establish the
reference positions for each axes.

Robot.HomeAll Method Homes all robots to establish the reference
positions for each of their axes.

Robot.JointToMotor Method
Converts an array of axis joint
degrees or millimeters) to an equivalent

 angles (in
array

of motor positions (in encoder counts)..

Robot.LastProfile Property

Returns a Profile Object whose properties
are equal to those of the currently executing
motion or the last executed motion if no
motion is active.

Robot.MotorTempStatus Property Returns a code that indicates the temperature
status of a motor.

Robot.MotorToJoint Method encoder counts) to an equivalen
joint angles (in degrees or millim

Converts an array of motor positions
t arr

 (in
ay of axis

eters).

Robot.Payload Property
Asserts or retrieves the last asserted value
that specifies the mass of the payload being
carried by the robot.

Robot.RapidDecel Property
Sets the Boolean flag that forces any in-
process motion for a robot to be rapidly
decelerated to a stop.

Robot.RealTimeModAcm Property

 whose value is
equal to the accumulated modifications
generated by the Real-time Trajectory
Modification mode.

Returns a Cartesian Location

Robot.RestartBase Property base of the robot that was set when the
controller was restarted.

Gets the position and orientation offset for the

Robot.RestartTool Property
Gets the position and orientation offset for the
tool or gripper of the robot that was set when
the controller was restarted.

Robot.Selected Property Sets and gets the default robot number to be
used when accessing a specific robot.

Robot.Source Property
Returns a Cartesian Location whose value is
equal to the initial position and orientation of
the previously executed motion.

Robot.SourceAngles Property
Returns an Angles Location whose value is
equal to the initial axes positions of the
previously executed motion.

Robot.SpeedAngles Property components contain the instantaneous sp
Returns an Angles Location whose

eed
of each axis.

Robot.Tool Property Sets and gets the position and orientation
offset for the tool or gripper of the robot.

Robot.TrajState Property
Gets an Integer that indicates the current
state of the Trajectory Generator for a given
robot.

Robot.Where Property
Gets a Cartesian Location whose value
indicates the current position and orientation
of a robot.

Robot.WhereAngles Property Gets an Angles Location whose value
indicates the current position of each axes of

337

GPL Dictionary Pages

a robot.

338

Robot Class

Robot.Attached Property

Sets and gets the number of the robot that is exclusively controlled by a thread.

Robot.Attached = <robot_number>
-or-
... Robot.Attached

Prerequisites

None

Parameters

None

Remarks

In order to ensure that a robot receives a consistent set of motion commands, a robot
ust be Attached before any motion commands can be issued by a thread and only a

single thread can be Attached to a robot at any given time.

her
threads are able to alter the robots operation in ways that make sense. For example, any

ttached
property is set to 0, any robot attached to the thread is released (un-Attached).

s Attached, the system forces the erty to be equal to the
Attached valu

Typically, if a p nded to control a robot, the GPL software development
environment ca
robot will be A
pr is term

Examples

Robot.Attached = 1 ' We now have exclusive control of robot #1

ot.Attached = 0 ' This is how you give up control

See Also

Robot C

m

While a robot is Attached by a thread, other threads are still permitted to read certain
properties of the robot, such as the current robot position and trajectory state. Also, ot

thread can disable high power, signal a Soft or Hard E-Stop, or force a robot to rapidly
decelerate.

The Attached robot number is an Integer that ranges from 1 to N. If the A

When a robot i Selected prop
e.

roject is inte
n be configured to automatically generate the statements to ensure the

ttached at the start of program execution and un-Attached when the
inated or pauses execution. ogram

Rob

lass | Robot .Selected

339

GPL Dictionary Pages

Robot.Base Property

Sets and gets the position and orientation offset for the base of the robot.

Robot.Base = <Cartesian_location>
-or-
... Robot.Base (robot)

Prerequisites

• For the set operation, the robot must be attached to the current thread.
• For the set operation, the Location must be of the Cartesian type.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property permits a project to either set or retrieve the Cartesian Location Object
that defines the position and orientation offset from the base of the robot to the origin of
the World coordinate system.

The Base definition is beneficial if you create an application using Cartesian Locations
and the base of the robot is subsequently shifted slightly. By adjusting the position of the
Base definition, a project can automatically correct all of the joint angle positions that will
be computed from Cartesian Locations.

For computational reasons, some robot kinematic modules may not support the Base
property. Also, as a computational efficiency, the value of Base can only contain a
positional offset in X, Y, and Z and a rotation about the Z-axis. That is, the Euler angles
for the Base must always be "X,Y,Z,Yaw,0,0".

For most applications, the Base value is not used and its value is set to "0,0,0,0,0,0".

Once the Robot.Base has been set, these dimensions remain in effect until the Base
property is set again or the controller is powered down and restarted. As a convenience,
when the controller is restarted, a "Restart Base " definition is automatically put into effect
based upon the values of "Base set at restart" (DataID 16052).

Changing the robot's Base instantaneously changes where the system thinks that the
robot's Cartesian set point is located. So, if the robot is in motion when a thread attempts
to set the Base, GPL automatically waits until the motion is completed before executing
this instruction.

340

Robot Class

Examples

on
Robot.Attached = 1

(Robot.Base().X) ' Outputs a value of 10

See Als

Robot C

Dim base As New Locati

base.XYZ(10, 0, 0) ' Move base by 10mm in X
Robot.Base = base
Console.WriteLine

o

lass | Robot.RestartBase

341

GPL Dictionary Pages

Robot.CartMode Property

ns an Integer that contains flag bits that indicate if any special Cartesian trajectory
modes are active.
Retur

...Robot.CartMode (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

The Trajectory Generator supports a number of special operating modes that can only be
executed when Cartesian motions are being evaluated. This property returns an Integer
that contains flag bits that indicate if any of these special modes are currently active.

This is the same value that is returned in the "CartMode Trajectory Flags" (DataID 3526)
Parameter Database entry.

The bits within the value returned by this property are defined as follows:

CartMode Flags Description

&H01
Conveyor Tracking. If on, indicates that the robot is moving with respect to a
conveyor belt and is automatically adjusting the Cartesian set point to track the
belt.

&H02

Real-time Trajectory Modification. If on, indicates that the Cartesian set point
can be dynamically altered based upon input from a GPL program. The
Trajectory Generator incorporates the real-time modifications into the
computed Cartesian set point each trajectory cycle.

&H04
SpeedDAC. If on, indicates that the Trajectory Generator is computing the
instantaneous tool tip speed and using this information to control the value of a
analog output (DAC) device.

Examples

Dim flags As Integer
flags = Robot.CartMode() ' Reads current mode bits

See Also

342

Robot Class

Robot Class | Move.StartRealTimeMod | Move.StartSpeedDAC

343

GPL Dictionary Pages

Robot.Custom Property

Sets and gets elements of a parameter array whose interpretation is specific to each
kinematic module.

Robot.Custom (index) = <New_value>
-or-
... Robot.Custom (robot, index)

Prerequ

associated robot.

Parameters

index

An optional numeric expression that specifies the element of the custom
kinematic parameter array (1-5) that is accessed. If this value is 1 or

kinematic modules have special runtime parameters that alter their behavior in
. For example, the "Dual RPR" robot has two arms and two sets
moved. At any given time, only one of the arms and one of the

rtesian position and orientation of
kinematic module at

ally considered part of the robot.

 some instances, setting a parameter may cause the executing thread to pause waiting
ed robot to complete its current motion. This side effect and other similar

s are controlled by the specific kinematic module type.

For a description of how these parameters are utilized in a specific robot and their side
effects, please consult the documentation on the Kinematic Robot Modules.

Examples

Robot.Attached = 1

isites

• For the set operation, the robot must be attached to the current thread.
• For kinematic modules that do not use the array of custom kinematic parameters,

setting or reading these parameters has no effect on the operation of the

unspecified, the first element will be accessed.

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

Selected
a non-standard fashion

hat can be of grippers t
grippers can be factored into the computation of the Ca
the robot. The "custom kinematic parameters"
runtime to specify which of the two arms is logic

are utilized by this

In
for the attach
action

344

Robot Class

Robot.Custom(1) = 1 ' Set custom parameter value

e Also Se

Robot Class

345

GPL Dictionary Pages

Robot.DefLinComp Method

s internal table of motor encoder "Linearity compensation" correction values that Define
are automatically applied to encoder values.

Robot.DefLinComp (robot, motor, enc_start, enc_step, num_cor, cor)

Prerequisites

• Motor linear compensation must be permitted for the robot.
• Motor linear compensation must be enabled.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

motor

A required numeric expression that specifies the motor to compensate
(1-n).

enc_start

A required numeric expression that specifies the first (and lowest)
encoder count to be corrected.

enc_step

A required numeric expression that specifies the step size in encoder
counts between successive encoder correction values. Must be greater
than 0 and can be a fractional value.

num_cor

A required numeric expression that specifies the number of encoder
correction values that are defined in the cor array (1-n). The number of
values is only limited by the available system memory. Increasing the
number of correction values and decreasing the step size improves the
compensation and only effects memory, not execution time.

cor

A required array of double precision values that specifies the correction
in encoder counts at each sequential encoder position. The corrections
can include fractional encoder counts. Positive values indicate that the

346

Robot Class

encoder should be reading a higher value and negative numbers indicate
the encoder reading should be lower.

le of encoder correction values for the
matically applied to each motor

ncoder reading. This technique permits repeatable position
ore linear and accurate axis positioning. In between

correction values, the corrections are interpolated. Outside of the correction range, the
coder value is utilized.

n as this method creates and initializes the correction data, it is immediately put
ect.

 convenience, this instruction can be executed even when robot power is enabled.
e corrections are small, this will result in a small instantaneous motion of the

.

Remarks

This method creates and defines an internal tab
specified motor of a robot. These corrections are auto
command and to each e
errors to be corrected to yield m

raw en

As soo
into eff

As a
So long as th
motor

et, motor
er should be disabled to avoid any sudden, high speed motor

motions.

WARNING: When first trying a new compensation data s
pow

Correction data sets can be created for any motor of the robot that you wish to
compensate. It is not necessary to create a correction table for all motors. Correction
tables stay in effect until they are over-written or the controller is restarted.

Please see the "Motor Linearity Compensation" section in the Controller Softwar
Software Setup > Selected Setup Details and Procedures chapter of the Precise
Documentation Library for information on creating correction data sets and for more
information on this technique.

e >

Exampl

cor(1) = -18 ' First step is too short

See Also

Robot

es

Dim cor(2) As Double
cor(0) = 0

cor(2) = 5.3 ' Second step is too long
Robot.DefLinComp(1, 1, 5000, 1000, 3, cor)

Class

347

GPL Dictionary Pages

Robot.Dest Property

Returns a Cartesian Location whose value is equal to the originally planned final
destination of the previously executed motion.

...Robot.Dest (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the Cartesian position and orientation that was
originally planned as the final destination for the previously executed motion. The
previously executed motion can still be in progress or could have already stopped
executing when this property is accessed.

This information is useful since it is not altered even if the previous motion was
prematurely terminated due to a RapidDecel, E-Stop, or other condition. Consequently,
this data can be utilized to complete the previous motion.

Note that performing a motion that is relative to the Dest Location is not the same as
performing a Move.Rel instruction. The Move.Rel instruction will perform a incremental
motion relative to wherever the robot's final position was at the conclusion of the previous
motion. Moving relative to the Dest Location moves with respect to where the previous
motion was planned to terminate.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to planned Cartesian position and orientation
destination of the previous motion.

RefFrame Always Null

Config Configuration bits for the planned destination of the previous
motion.

ZClearance 1.0e32 to indicate not initialized

348

Robot Class

All other properties Always zeroed.

Examples

Dim As Location DestLoc
DestLoc = Robot.Dest() ' Reads planned motion destination

See Also

Robot Class | Robot.DestAngles | Robot.LastProfile | Robot.Source | Robot.SourceAngles

349

GPL Dictionary Pages

Robot.DestAngles Property

nal
destination of the previously executed motion.
Returns an Angles Location whose value is equal to the originally planned fi

...Robot.DestAngles (robot)

Prerequisites

Non

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be

Remark

ty can be used for retrieving the axes positions that were originally planned as
the final destination for the previously executed motion. The previously executed motion

This information is useful since it is not altered even if the previous motion was

the
same as performing a Move.Rel instruction. The Move.Rel instruction will perform a

remental motion relative to wherever the robot's final position was at the conclusion of
the previous motion. Moving relative to the DestAngles Location moves with respect to

here the previous motion was planned to terminate.

The following table describes the data returned in the Location value.

e

Parameters

robot

accessed.

s

This proper

can still be in progress or could have already stopped executing when this property is
accessed.

prematurely terminated due to a RapidDecel, E-Stop, or other condition. Consequently,
this data can be utilized to complete the previous motion.

Note that performing a motion that is relative to the DestAngles Location is not

inc

w

Property Returned Location Object value

Type Angles Location

Angles Set equal to planned axes position destinations of the previous
motion.

RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

350

Robot Class

Dim DestLoc As Location

See Also

Robot C

DestLoc = Robot.DestAngles() ' Reads planned motion destination

lass | Robot.Dest | Robot.LastProfile | Robot.Source | Robot.SourceAngles

351

GPL Dictionary Pages

Robot.Home Method

each axes. Homes t ttachedhe A robot to establish the reference positions for

Robot.Home

Prerequ

• High power to the robot must be enabled.
• A robot must be Attached by the thread.

Parameters

None

Remarks

This method allows a robot to be homed via a program statement. The homing process
reestablishes the reference (e.g. zero) position for each axis of the robot. This enables
the robot to reliably move to the same positions after each time that the controller is
restarted even when the robot is equipped with incremental, not absolute encoders.

The axes homing sequence must be executed once for each axis after the system is
restarted and prior to executing any position controlled motions. Often, the homing
process is manually initiated via the operator control panel.

There are many different methods that can be employed to home an axis, e.g. home to
hard stop, home to limit switch, home to home switch, etc. The specific method for each
axis and the parameters for each method are pre-configured by the robot manufacturer.
The Home method simply executes the pre-configured method for the robot Attached to
the thread.

Examples

Robot.Attached = 1 ' Attach a robot to the thread
Robot.Home() ' Home the Attached robot

See Also

Robot Class

isites

 | Robot.HomeAll

352

Robot Class

Robot.HomeAll Method

Homes all robots to establish the reference positions for each of their axes.

Robot.HomeAll

Prerequisites

• High power must be enabled.
No robot can be Attached by a different thread.

Remarks

This me all robots to be homed via a program statement. This homing
process reestablishes the reference (e.g. zero) position for each axis of each robot. This

ables the robots to reliably move to the same positions after each time that the
controller is restarted even when the robots are equipped with incremental, not absolute

each axis of each robot after the
system is restarted and prior to executing a robot in position controlled mode. Often, the

There are many different methods that can be employed to home an axis, e.g. home to
d stop, home to limit switch, home to home switch, etc. The specific method for each

axis and the parameters for each method are pre-configured by the robot manufacturer.
he HomeAll method simply executes the pre-configured method for all robots.

Exampl

Robot.HomeAll() ' Execute home sequence for all robots

See Also

Robot Class

•

Parameters

None

thod allows

en

encoders.

The axes homing sequence must be executed once for

homing process is manually initiated via the operator control panel.

har

T

es

 | Robot.Home

353

GPL Dictionary Pages

Robot.JointToMotor Method

 (in degrees or millimeters) to an equivalent array of
motor positions (in encoder counts). Automatically takes into account any motor coupling
Converts an array of axis joint angles

and other factors.

Robot.JointToMotor (robot, joint_pos, motor_pos)

Prerequisites

None

ters Parame

t

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be

joint_po

A required array of double precision values that defines the axis position
values, in either degrees (for rotary axes) or millimeters (for linear axes),

robot. joint_pos(0) must contain the position for axis 1.

otor_pos

A required array of double precision values into which the computed

Remarks

rees for rotary joints
and millimeters for linear axes, into an equivalent array of motor positions, specified in
enc .

For many robots,
encode ounts. ip due
to mechanical cou tors, linearity compensation, encoder roll-over
compen tion, an

This method can hip
between joint ang der counts are automatically taken into
conside ion.

robo

accessed.

s

that are to be converted into an equivalent array of motor encoder
positions. This array must have one value for each of the axes of the

m

equivalent motor encoder positions are written in encoder counts. This
array must have at least one element for each motor of the robot.
motor_pos(0) will contain the position for motor 1.

This method converts an array of axis joint angles, specified in deg

oder counts

 there is a simple scalar relationship between joint angles and motor
However, some robots have a much more complicated relationsh
pling of mo

r c

sa d other factors.

be executed for any robot and all factors that affect the relations
les and motor enco

rat

354

Robot Class

Exampl

Dim mot(4), jts(4), jt2(4) As Double
 cur_pos As New Location
 ii As Integer

cur_pos.Type = 1 ' Read joint positions
r_pos.Here

 ' Copy to jts array

jts, mot) ' Convert to enc counts

See Als

Robot Class

es

Dim
Dim

cu
For ii = 1 To 4
 jts(ii-1) = cur_pos.Angle(ii)
Next ii
Robot.JointToMotor(1,
Robot.MotorToJoint(1, mot, jt2) ' Convert back to jt angles

o

 | Robot.MotorToJoint

355

GPL Dictionary Pages

Robot.LastProfile Property

Returns a Profile Object whose properties are equal to those of the currently executing
motion or the last executed motion if no motion is active.

...Robot.LastProfile (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed

Remarks

This property extracts a copy of the motion Profile parameters that were specified for the
currentl in progress.
The ext

If the pr
the Dest or DestAngles properties, is very useful for retrying the motion.

Examples

Dim Pro
Profile

See Also

Robot Class

(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

y executing motion of a Robot or the last motion if no motion is now
racted values are returned in a Profile Object.

evious motion was interrupted due to an error, this property, in combination with

file1 As Profile
1 = Robot.LastProfile() ' Reads last Profile utilized

 |Robot.Dest | Robot.DestAngles

356

Robot Class

Robot.MotorTempStatus Propert

tus of a motor.

y

Returns an Integer value that indicates the temperature sta

...Robot.MotorTempStatus (robot, motor)

Prerequisites

erature sensing and motor temperature monitoring must be
enabled. Motor temperature monitoring is enabled by setting Max motor temperature
(DataID 10110) to a non-zero value.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

motor

A required numeric expression that specifies the motor to be accessed
(1-n).

Remarks

This property returns an Integer code that indicates the temperature status of a motor.

This value permits a program to determine if a motor's temperature is within its normal
operating range without needing to know the configuration parameters for the motor. If
required, the specific motor temperature value can be accessed by reading the Motor
temperature (DataID 12110) parameter.

The following table describes the codes returned by this property.

The motor must support temp

Returned
Code Description

-1
Temperature monitoring is not enabled for this motor. Use parameter
Max motor temperature (DataID 10110) to enable temperature
monitoring.

0 The motor's temperature is within its normal operating range.

1
The motor's temperature is within the warning temperature range. See
Warning motor temperature (DataID 10111) to set the warning
temperature value.

2 The motor's temperature has exceeded its maximum permitted value.

357

GPL Dictionary Pages

See the Motor Temperature Sensing section in the Controller Software Setup chapter
of the Precise Documentation Library for details on the operation of supported motor

Exampl

Dim temp As Integer

Message("Motor temperature too high")
 Else
 Controller.SystemMessage("Motor temperature warning")

d If

See Also

Robot Clas

temperature sensors.

es

temp = Robot.MotorTempStatus(1, 2)
If temp > 0 Then
 If temp > 1 Then
 Controller.System

 En
End If

s

358

Robot Class

Robot

nverts an array of motor positions (in encoder counts) to an equivalent array of axis
s (in degrees or millimeters). Automatically takes into account any motor

ctors.

.MotorToJoint Method

Co
joint angle
coupling and other fa

Robot.MotorToJoint (robot, motor_pos, joint_pos)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

motor_pos

A required array of double precision values that defines the motor
encoder position values that are to be converted into an equivalent array
of joint axis positions. This array must have one value for each of the
motors of the robot. motor_pos(0) must contain the position for motor 1.

joint_pos

A required array of double precision values into which the computed
equivalent joint axis positions are written in either degrees (for rotary
axes) or millimeters (for linear axes). This array must have at least one
element for each axis of the robot. joint_pos(0) will contain the position
for axis 1.

Remarks

This method converts an array of motor positions, specified in encoder counts, into an
equivalent array of axis joint angles, specified in degrees for rotary joints and millimeters
for linear axes.

For many robots, there is a simple scalar relationship between motor encoder counts and
joint angles. However, some robots have a much more complicated relationship due to
mechanical coupling of motors, linearity compensation, encoder roll-over compensation,
and other factors.

This method can be executed for any robot and all factors that affect the relationship
between motor encoder counts and joint angles are automatically taken into
consideration.

359

GPL Dictionary Pages

Examples

As Double
Dim cur_pos As New Location

For ii = 1 To 4 ' Copy to jts array
gle(ii)

Robot.JointToMotor(1, jts, mot) ' Convert to enc counts
Robot.MotorToJoint(1, mot, jt2) ' Convert back to jt angles

See Also

Robot Class

Dim mot(4), jts(4), jt2(4)

Dim ii As Integer
cur_pos.Type = 1 ' Read joint positions
cur_pos.Here

 jts(ii-1) = cur_pos.An
Next ii

 | Robot.JointToMotor

360

Robot Class

Robot.Payload Property

Asserts or retrieves the last asserted value that specifies the mass of the paylo
carried by the robot (as a percentage of the maximum payload).

ad being

Robot.Payload = <new_percentage>
-or-
... Robot.Payload (robot)

Prerequ

• Setting the payload only affects the performance of the robot if the robot's
kinematic module supports Dynamic Feedforward compensation (DFF) and if
DFF is enabled.
For the set operation, the robot must either be attached to the current thread or

Parameters

bot

ccessed

Remark

of

For robots that have Dynamic Feedforward compensation enabled (DFF), this property
will adju each of the robot's axes to compensate for the mass of the
payload. If full DFF compensation is supported, changing this value will alter the gravity
compensation fo o control loops to
command torqu r as well as to account
for such factors

For example, if a robot picks up a very heavy payload, specifying a new mass value that
correctly will improve the gravity balancing of any axis that is placed
into Manual mproved estimate will also reduce the position
tracking errors o

For simplicity, the payload i d as a percentage of the maximum mass defined by
the "Dyn mass, kg" (DataID 16067).

Since changing loops, as a precaution, if the
robot is in motio PL automatically waits until
the motion is co he change. Once the payload is changed, the
new value will remain in effect until the Robot.Payload is altered or the controller is

isites

•
must not be attached to any thread.

ro

An optional numeric expression that specifies the robot to be a
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

s

This property either asserts or retrieves the last asserted value that specifies the mass
the payload being carried by the robot. For clarity, this property does not measure the
mass of the payload, it simply sets the estimated mass or reads the last set value.

st the feedforward for

r each affected axis and will adjust the axes serv
es to compensate for the inertial load of each moto
as centripetal and Coriolis forces.

 estimates the load
Control Free Mode. This i

f all axes during computer controlled motions.

s specifie
amic feedforward

the payload alters the behavior of the servo
n when the value of this property is altered, G
mpleted before applying t

361

GPL Dictionary Pages

powered down and restarted. As a convenience, when the controller is restarted, the
initial value of the payload is automatically set to the value specified by the "Dynamic

edforward default % payload" (DataID 16071).

Exampl

Robot.Attached = 1
 being carried

See Also

Robot Class

fe

es

Robot.Payload = 50 ' 1/2 maximum payload
Console.WriteLine(Robot.Payload()) ' Outputs a value of 50

362

Robot Class

Robot.RapidDecel Property

Sets the internal Boolean flag that forces any in-process motion for a robot to be rapidl
decelerated to a stop.

y

Robot.RapidDecel (robot)

Prerequisites

None

Parameters

tion in

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

Setting the RapidDecel flag immediately initiates a rapid deceleration of any mo
progress for the specified robot. At the conclusion of the deceleration, no error is
signaled and program execution continues un-interrupted. The motion will, however,
have been stopped at a location different from the original plan. If the robot was n
motion, set

ot in
ting this flag is ignored. At the start of the next motion, the RapidDecel flag is

automatically reset.

aturely due to an external
signal, such as tripping a switch, touch sensor, or force sensor. Since these are

 flag stops any in-process motion, it is similar in effect to the Soft E-Stop, Hard
E-Stop, and Disable Power functions. However, those functions are typically used to

p all robots simultaneously when an unexpected event occurs and they therefore
rate error conditions.

Exampl

bot.RapidDecel() ' Triggers a rapid decel of Selected robot

obot Class

The RapidDecel feature can be used to stop motions prem

expected events, program processing is not halted.

In that this

sto
gene

es

Ro

See Also

R | Controller.PowerEnabled | Controller.SoftEstop

363

GPL Dictionary Pages

Robot.RealTimeModAcm Property

al-time Trajectory Modification mode.
Returns a Cartesian Location whose value is equal to the accumulated path
modifications generated by the Re

... Robot.RealTimeModAcm (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

When the Real-time Trajectory Modification mode is enabled (via the
Move.StartRealTimeMod method), this property can be used to sample the
instantaneous accumulated path modification value computed by this special mode of
operation. Knowledge of the accumulated change is not required in most applications,
but this value can be of use in certain situations.

 a function of the coordinate
frames utilized to apply the real-time modifications and to accumulate the changes. For

World-World Mode

Updated_position = Accumulated_position +

SetPoint_orientation

Tool-World Mode

Updated_transform = Accumulated_transform *
SetPoint_transform

Tool-Tool Mode

Updated_transform = SetPoint_transform *
Accumulated_transform

The interpretation of the accumulated change Location is

each of the primary modes of the Real-time Modification method, the planned set point
transformation is conceptually computed each trajectory cycle as follows:

SetPoint_position
Updated_orientation = Accumulated_orientation *

364

Robot Class

Examples

dz = Robot.RealTimeModAcm.Z ' Accumulated change in Z position

See Also

Robot C

Dim dz As Double

lass | Move.StartRealTimeMod | Move.SetRealTimeMod

365

GPL Dictionary Pages

Robot.RestartBase Property

rientation offset for the base of the robot that was set when the
controller was restarted.
Gets the position and o

... Robot.RestartBase (robot)

Prerequi

Parame

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be

Remarks

 a convenience, when the controller is restarted, the "base" for each robot is
automatically set equal to the position and orientation offset defined by its "Base set at

ach

This property returns a Cartesian Location value that is equal to the Base dimensions

sing the Robot.Base
property. See that property for additional information on the use and benefits of the Base

Exampl

See Also

Robot Clas

sites

None

ters

accessed.

As

restart" (DataID 16052) value. Since many applications utilize the same base offset e
day, this ensures that the Base dimensions are correctly set when the system is
restarted.

that were set the last time that the system was restarted.

Once set, these Base dimensions can be easily modified u

property.

es

Robot.Attached = 1
Robot.Base = Robot.RestartBase() ' Set base back to default

s | Robot.Base

366

Robot Class

Robot

Gets the position and orientation offset for the tool or gripper of the robot that was set
when the controller was restarted.

.RestartTool Property

... Robot.RestartTool (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

As a convenience, when the controller is restarted, the tool for each robot is automatically
set equal to the position and orientation offset defined by its "Tool set at restart" (DataID
16051) value. Since many applications utilize the same tool or gripper each day, this
ensures that the Tool dimensions are correctly set when the system is restarted.

This property returns a Cartesian Location value that is equal to the Tool dimensions
that were set the last time that the system was restarted.

Once set, these Tool dimensions can be easily modified using the Robot.Tool property.
See that property for additional information on the use and benefits of the Tool property.

Examples

Robot.Attached = 1
Robot.Tool = Robot.RestartTool() ' Set tool back to default

See Also

Robot Class | Robot.Tool

367

GPL Dictionary Pages

Robot.Selected Property

Sets and gets the default robot number to be used when accessing a specific robot.

Robot.Selected = <robot_number>
-or-
... Robot.Selected

Prerequisites

None

Parameters

None

Remarks

This property allows a thread to set its default robot number. Most of the properties and
ethods that reference a robot allow the robot number to be explicitly specified or to be

unspecified and utilize the Selected robot number by default. However, there are some

Examples

be set to 1

See Als

Robot Class

m

methods, such as the location_object.Here, that always access the Selected robot.

The Selected robot number is an Integer that ranges from 1 to N.

When a robot is Attached, the system forces the Selected property to be equal to the
Attached value.

Dim iRobot As Integer
Robot.Selected = 1 ' Robot #1 is now Selected
iRobot = Robot.Selected ' iRobot will

o

 | achedRobot.Att

368

Robot Class

Robot.Source Property

Returns a Cartesian Location whose value is equal to the starting position and
orientation of the previously executed motion.

...Robot.Source (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the Cartesian position and orientation for the
starting position of the previously executed motion. The previously executed motion can
still be in progress or could have already stopped executing when this property is
accessed.

The value returned by this property does not reflect any blending that may have occurred
if the motion was executed as part of a continuous path. That is, the value returned will
be the same whether or not continuous path was in effect.

This information is very useful when accessed in combination with the Dest Location to
reconstruct the previously planned motion. For example, this is beneficial for moving the
robot's tool back onto the previous path if the previous motion was prematurely
terminated via a RapidDecel.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to starting Cartesian position and orientation of the
previous motion.

RefFrame Always Null
Config Configuration bits for the start of the previous motion.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

369

GPL Dictionary Pages

Examples

SourceLoc = Robot.Source() ' Reads starting motion location

See Als

Robot C

Dim SourceLoc As Location

o

lass | Robot.Dest | Robot.DestAngles | Robot.LastProfile | Robot.SourceAngles

370

Robot Class

Robot.SourceAngles Property

Returns an Angles Location whose value is equal to the starting axes positions of the
previously executed motion.

...Robot.SourceAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the axes positions that represent the starting
position of the previously executed motion. The previously executed motion can still be
in progress or could have already stopped executing when this property is accessed.

The value returned by this property does not reflect any blending that may have occurred
if the motion was executed as part of a continuous path. That is, the value returned will
be the same whether or not continuous path was in effect.

This information is very useful when accessed in combination with the DestAngles
Location to reconstruct the previously planned motion. For example, this is beneficial for
moving the robot's axes back onto the previous path if the previous motion was
prematurely terminated via a RapidDecel.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location
Angles Set equal to initial axes positions of the previous motion.
RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Dim SourceLoc As Location
SourceLoc = Robot.SourceAngles() ' Reads initial motion position

371

GPL Dictionary Pages

See Also

Robot Class | Robot.Dest | Robot.DestAngles | Robot.LastProfile | Robot.Source

372

Robot Class

Robot

antaneous speeds of
ach of the robot's axes.

.SpeedAngles Property

Returns an Angles Location whose components contain the inst
e

...Robot.SpeedAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property returns the instantaneous speed of each of the robot's axes. These speeds
are determined by sampling the encoder values, differencing and filtering these values,
and then converting them to joint angles. The conversion to joint angles takes into
consideration any mechanical coupling between the motors and other kinematic
considerations.

This property returns the axes speed values in the Angles properties of an Angles
Location. The speeds are in units of mm/sec or degrees/sec as appropriate.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location

Angles Set equal to the instantaneous speeds for each of the axes of the robot
in mm/sec or deg/sec.

RefFrame Always Null
Config Always zeroed.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Dim RobotPos As Location
Dim jt3 As Double
RobotPos = Robot.SpeedAngles() ' How fast is each axis moving?
jt3 = RobotPos.Angle(3) ' Speed of axis 3

373

GPL Dictionary Pages

See Also

obot ClassR | Robot.Where | Robot.WhereAngles| location_object.Here

374

Robot Class

Robot.Tool Property

Sets and gets robot. the position and orientation offset for the tool or gripper of the

Ro Tool =bot. <Cartesian_location>
-or-
... Robot.Tool (robot)

Prerequi

Parameters

rob

An op
(1-n). Selected
acces

Remarks

This property trieve the Cartesian Location Object
that defines th ter
point of the ro

The Tool defin
l center point is properly defined and the system is instructed to
 path, the tool center point will move along a straight line even if

the orientation of the gripper is simultaneously changed. Also, in Jog-Tool control mode,

h no change in orientation. This corresponds to an Location
XYZ specification of "0,0,tool_length,0,0,0".

Once the Robot.Tool has been set, these dimensions remain in effect until the Tool
property is set again or the controller is powered down and restarted. As a convenience,
when the controller is restarted, a "Restart Tool" definition is automatically put into effect
based upon the values of "Tool set at restart" (DataID 16051).

the Tool dimension
s attempts

to s the Too tion is completed before executing
this instruction

Examples

sites

• For the set operation, the robot must either be attached to the current thread or
must not be attached to any thread.

• For the set operation, the Location must be of the Cartesian type.

ot

tional numeric expression that specifies the robot to be accessed
 If this value is 0 or unspecified, the robot will be
sed.

permits a project to either set or re
e position and orientation offset from the last axis of the robot to the cen
bot's gripper (or tool).

ition is particularly beneficial for robots that can change the orientation of
the gripper. When the too
move along a straight-line

the operator can easily rotate the tool center point while maintaining the same position.

For the majority of simple grippers, the gripper dimensions consist of just an offset along
the Z-axis of the robot wit

Changing
robot's Carte

s instantaneously changes where the system thinks that the
 the robot is in motion when a thread ian set point is located. So, if

l, GPL automatically waits until the moet
.

375

GPL Dictionary Pages

Dim tool As New Location
Robot.Attached = 1

imple tool with 100mm length

Console.WriteLine(Robot.Tool().Z) ' Outputs a value of 100

See Als

Robot C

tool.XYZ(0, 0, 100) ' S
Robot.Tool = tool

o

lass | Robot.RestartTool

376

Robot Class

Robot

Returns a numeric value that provides state information for the Trajectory Generator or
tion for a given robot.

.TrajState Property

the currently executing mo

...Robot.TrajState (robot, mode)

Prerequ

e

Parame

robot

 numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

eric expression that specifies the type of state
information that is to be returned. If no value is specified, a mode of 0 is

Remark

isites

Non

ters

An optional

mode

An optional num

assumed.

s

This property returns various state information for the trajectory generator or the currently
executing motion for a specific robot depending upon the value of the mode parameter.

mode 0: Basic Trajectory State

This property returns a value that indicates whether a trajectory is currently being
evaluated for the specified robot and, if so, what portion of the trajectory is being
generated. This value can be utilized to determine if a trajectory is being rampe
maximum sp

d up to its
eed, being ramped, waiting for final position errors to be nulled, sitting idle,

The possible values returned by this property are presented in the following table:

performing a special control mode, etc.

TrajState Description (Mode = 0, Basic Trajectory State)
0 Halted, Trajectory Generator not being executed and no robot attached

1 Idle, Traje tor ready to service commands but no motion in
progress.

ctory Genera

2 Position controlled mode, accelerating up to maximum speed
3 Position c oving at constant velocity ontrolled mode, m

377

GPL Dictionary Pages

4 Position controlled mode, blending two motions together
5 Position controlled mode, decelerating robot to a stop
6 Position controlled mode, force overlapping two motions together
8 Velocity controlled mode
9 Special motor speed control mode, usually indicates homing
10 Jog (manual) control mode
11 External trajectory control, special mode
15 Motion terminated, waiting for final position to satisfy InRange criteria

mode 1: Active Motion Status

This property returns a value that indicates whether the currently active or the previous
motion (if none is currently active) has been initiated or has terminated and, if so, whether
the motion ran to completion or was prematurely terminated.

The possible values returned by this property are presented in the following table:

TrajState Description (Mode = 1, Active Motion Status)
0 No motion posted for execution yet.

1
Motion was posted to the trajectory generator but was rejected because it didn't
match the end point of the previous motion (this value is normally never
returned).

2 Motion has been posted to the trajectory generator for execution but has not
started yet (this value is normally never returned).

3 Motion has been posted that is to be executed in continuous path mode with
respect to the previous motion (this value is normally never returned).

4 Motion currently being executed.

5 Motion terminated or is being terminated, but the motion did not run to
completion and the robot did not or will not reach its planned destination.

6 Motion terminated and ran to completion and reached its planned destination.

mode 2: Motion Counter

Each time that a new motion is executed for a specific robot, the robot's Motion Counter
is incremented. This value can use used to verify that the data being analyzed is with
respect to the same motion. This is a 32-bit integer counter and should not roll-over for
most practical situations.

mode 3: Active Motion Type

This property returns a value that indicates the type of motion being executed, e.g.
Cartesian straight-line, joint interpolated, etc. Some of the values returned are for special
modes and are not documented.

TrajState Description (Mode = 3, Active Motion Type)
0 Joint interpolated motion
1 Cartesian straight-line motion
2 Circular interpolated motion

3 - 6 Special motion types, such as velocity or jog or external trajectory control

378

Robot Class

modes.

mode 4: Total Motion Time in Seconds

ing), this value returns the total motion time in seconds. If the motion is part of a
continuous path, some of the specified time will be overlapped with the previous or the

mode

For the currently executing motion or the previous motion (if no motion is currently
execut

next motion.

 5: Motion Elapsed Time in Seconds

This indicates the number of seconds that have elapsed since the start of the currently
ing motion or the previous motion (if no motion is currently executing). After a

motion completes execution, this timer continues to increase in value until the next
ion begins execution, at which time the timer is reset to zero.

execut

mot

mode 6: Motion Interpolation Factor

This is t n the
starting , it has a value
of 0. At the end of the motion, it will have a value of 1. This factor can be used to
determine how far the trajectory has progressed. For example, for Cartesian straight-line

otions, this value indicates how far the robot is from the initial or the final position.

Exampl

See Als

Robot C

he factor that is computed by the Trajectory Generator to interpolate betwee
and the ending position of the currently executing motion. Initially

m

es

Dim istate As Integer
istate = Robot.TrajState() ' Reads current trajectory state

o

lass

379

GPL Dictionary Pages

Robot.Where Property

Returns a Cartesian Location whose value is equal to the current position and
orientation of a robot.

...Robot.Where (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property returns the current position and orientation of a robot in a Cartesian
Location. This position and orientation automatically take into account both the robot's
Base and Tool offsets.

The returned value is computed by reading the instantaneous values of each motor's
encoder and converting these values into an equivalent Cartesian position and
orientation. These sampled values are usually slightly different than the commanded
axes set point positions due to servo tracking errors and small positional errors.

The conversion to Cartesian coordinates make use of the optional Kinematic module for
the selected robot.

Note, if you wish to update the position and orientation of a Location variable, it is often
better to utilize the location_object.Here method rather than simply assigning the Where
Location to the variable. The Here method preserves the other properties of the
Location variable and will automatically take into account any reference frame
(RefFrame).

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location
PosWrtRef Set equal to current Cartesian position and orientation of a robot.
RefFrame Always Null
Config Configuration bits for the current robot position and orientation.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

380

Robot Class

Examples

tion
re() ' Where is the robot right now?

See Also

Robot Class

Dim RobotPos As Loca
RobotPos = Robot.Whe

| Robot.SpeedAngles| Robot.WhereAngles | location_object.Here

381

GPL Dictionary Pages

Robot.WhereAngles Property

es positions of a
robot.
Returns an Angles Location whose value is equal to the current ax

...Robot.WhereAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed

Remarks

This property returns the current positions of the axes ot in a Angles Location.

The returned value is computed by reading the instantaneous values of each motor's
encoder mpled
values a due to
servo tr ors.

Note, if tilize
the loca ssigning the WhereAngles
Location to the variable. The Here method preserves the other properties of the

cation variable.

(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

 of a rob

 and converting these values into equivalent axes positions. These sa
re usually slightly different than the commanded axes set point positions

acking errors and small positional err

you wish to update the position of a Location variable, it is often better to u
tion_object.Here method rather than simply a

Lo

The following table describes the data returned in the Location value.

Property Returned Location Object value

Typ Angles Location e
Angles Set equal to current position of each axes of a robot.
RefFrame Always Null
Config Configuration bits for the current robot position and orientation.
ZC .0e32 to indicate not initialized learance 1
All other properties Always zeroed.

Examples

Dim RobotPos As Location

robot right now? RobotPos = Robot.WhereAngles() ' Where is the

382

Robot Class

See Also

Robot Class | Robot.SpeedAngles | Robot.Where | location_object.Here

383

Signal Class
Signal Class Summary

The following pages provide detailed information on the properties and methods of the
cess to the simple hardware interfacing
 the digital and analog input and output (I/O).

 a GPL program to coordinate its actions with those of

the digital I/O, programs can employ semaphores to interlock their execution with
other equipment in the work cell such as feeders or processing machines. Using the

 I/O, programs can sample the values of simple sensors such as force or
sensors to alter the sequence of program execution.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Single, Double, are automatically performed as required. So, for numeric
s and methods of the Signal Class, it is not necessary to have different

variation meter
data typ results
that are maller
data typ long
as nume

The tab ibed in
greater

global Signal Class. This class provides ac
features of the Guidance controller, such as
These common interfaces allow
other devices.

Using

analog
temperature

Integer,
propertie

s of these members to deal with the different possible mixes of input para
es. Also, as appropriate, the properties and methods generally produce
 formatted as Double’s. These results will automatically be converted to s
es as necessary, e.g. Double -> Integer, and will not generate an error so
ric overflow does not occur.

le below briefly summarizes the properties and methods that are descr
detail in the following sections.

Member Type Description

Signal.AIO Property Sets and gets the values of the analog input
and output channels.

Signal.DIO Property Sets and gets the values of the digital
and output channels.

input

384

Signal Class

Signal.AIO Property

Sets and gets the values of the analog input and output channels.

Signal.AIO(channel)=< _value> new
-or-
... Signal.AIO(channel)

Prereq

Param

cha

uired n ssion that nalog channel to be
sse ranges ers

uisites

None

eters

nnel

A req
acce

umeric expre specifies the a
d. The allocated of channel numb are as follows:

Channel Type Minimum number Max allocated number

Analog outputs 1 10000
Analog inputs 10001 20000

Please consult the hardware specification for your specific version of
controller for information on the maximum number of input and output

s available on your system.

 the value o
put and o

Remarks

At the hardware level, bo als levels are represented
by in ers whos
To generalize accessing
by floating point numbers
hard s.

In many systems, analog 00.
Please consult the personnel who configured your controller for the applicable ranges of

Exampl

 sensor_reading As Single
Signal.AIO(10001) 'Sets sensor_reading equal to the

 'scaled value of the first analog
 'input channel

channel

Only f an output channel can be written. The current values of
both in utput channels can be read.

th analog input and analog output sign
teger numb e ranges are a function of the specific model of your controller.

 these devices at the GPL level, analog values are represented
 that are scaled, offset, and thresholded relative to the raw

ware value

 values are configured to range from either +-1.0 or +-1

possible analog values.

es

Dim
sensor_reading =

385

GPL Dictionary Pages

See Als

Signal

o

Class | Signal.DIO

386

Signal Class

Signal.DIO Property

Sets and gets the values of the digital input and output channels.

Signal.DIO(channel, count)=<new_value>
-or-
... Signal.DIO(channel, count)

Prerequisites

Parameters

channel

 num
be accessed. S
signal type. Within tho s are organized into banks of
96 I/O points. The ban

g the sign

In a distributed slave
controllers may
100000 times th

count

An optional num
digital channels
omitted, only a
Boolean.

If specified, the
meter is no ount of 1.

If multiple chann
signal+count-1 m .

Remark

cates
e signal is True if cates

that the signal is True if the
 True if the inpu

if the input is at a l

ut DIO sign
 can be read.

None

A required eric expression that specifies the first digital channel to
d into ranges based on the ignal numbers are organize

se ranges, the signal
k numbers start at 0. A signal number is formed by

al base value to 100 times the bank number.

servo netw

addin

ork, general digital I/O signals on the
 be accessed from the master controller by adding
e slave controller node number to the signal number.

eric expression that specifies the number of successive
 to be accessed. The value may range from 1 to 32. If
single channel is accessed and the property value is a

 property value is a numeric bit mask. Omitting the count
t the same as specifying a cpara

els are specified, all channels within the range signal to
ust be valid

s

When specifying DIO signal (channel) numbers, a positive base signal number indi
 its logical level is high. A negative base signal number indithat th
 its logical level is low. For example, if the channel is 10001,
t is at a logic high level. If the channel is –10001, the signal is signal is

True ogic low level.

Only an outp
signals

al can be written. The current values of both input and output

387

GPL Dictionary Pages

If count is specified, the rty
hannel+1 corres to bit n, where n < count.

le below shows

 DIO specified by channel corresponds to bit 0 of the prope
ponds to bit 1, channel+n correspondsvalue. c

The tab the possible signal numbers based on the type and the bank.

Signal Type Signal Base Signal Range Banks

Test 0 0

General
outputs 1 1 + 100*bank

96 + 100*bank

0 = Local outputs,
1-15 = Remote outputs on RIO
or MODBUS/TCP modules.

Dedicated
outputs 8001 8001 + 100*bank

8096 + 100*bank
0 = Controller outputs,
1-15 = axis outputs.

General
inputs 10001 10001 + 100*bank

10096 + 100*bank

0 = Local inputs,
1-15 = Remote inputs on RIO or
MODBUS/TCP modules.

Dedicated
inputs 18001 18001 + 100*bank

18096 + 100*bank
0 = Controller inputs,
1-15 = axis inputs.

Software I/O 20001 20001 - 20064 Not used
Reserved 21001 21001 - 100000

Servo Network
node n general

outputs
100000*n + 13 100000*n + 20 0 = Local outputs only

Servo Network
node n general

inputs
100000*n + 10001 100000*n + 10012 0 = Local inputs only

The following describes the different type of digital IO signals:

DIO Type Description

Test Channel 0 is a special test value that always reads False no matter
what value is written to it.

General These are the “user” DIO signals that are provided in the controller or
remote I/O boards. They do not have a predefined use and can be
freely employed. In some cases, general DIO may be configured to
serve as dedicated IO. For example, a general DIO can be
configured as a joint over-travel limit.

Dedicated The dedicated DIO are pre-defined to fixed machine control functions
such as a home sensor. Some of these signals are assigned to
specific pins. However, others can be mapped to General DIO pins.

Software These “soft” IO do not drive or read actual hardware output or input
signals. They can be used as semaphores between threads or in
place of hardware DIO for testing control algorithms.

Please consult the hardware specification for your specific version of controller for
information on the maximum number of input and output channels of each type available
on your system.

Examples

Dim semaphore As Boolean

388

Signal Class

Signal.DIO(20001) = True ' Sets soft signal 20001 to True
semaphore = Signal.DIO(-20001) ' Will set semaphore value to False
Signal.DIO (20001) = 4 ' Sets soft signal 20001 to True
 ' since 4 is non-zero.

0001, 1) = 4 ' Sets soft signal 20001 to False
0001, 3) = 4 ' Sets soft signal 20001 to False

 ' and soft signal 20002 to False

See Also

Signal Class

Signal.DIO (2
Signal.DIO (2

 ' and soft signal 20003 to True

 | Signal.AIO

389

Statements
Statements Summary

tailed information on the basic statements that are
d as an integral portion of the Guidance Programming Language. These

tements provide standard functionality found in any programming language such as
control structures, variable declarations, subroutine and function calls, etc. As much as

n modeled after standard instructions provide by

The table below briefly summarizes the statements that are described in greater detail in
e following sections.

The following pages provide de
provide
sta

possible, these statements have bee
other variants of the Basic Programming Language.

th

Statement Description

Call Transfers control to a procedure and ignores its return value.

Case / Case Else
Used within a Select...Case...End Select sequence to specify
possible matches for the target value and to delineate the
statements to be executed if a match occurs.

Class Begins a Class definition.
Const Declares a read-only variable for use in a procedure.

Delegate
Creates a Delegate class that provides a means for indirectly
calling a function or subroutine procedure using an object
variable.

Dim Declares a variable for use in a procedure.

Do...Loop
Bounds a block of instructions that are repeatedly executed so
long as a specified expression evaluates to True or until the
expression value becomes True.

Else, ElseIf Used within an If…Then…Else…End If series of statements to
conditionally execute alternative blocks of instructions.

End Marks the end of a control structure or major project element
such as a program or function.

Exit Terminates the execution of a block of instructions within the
innermost control structure of a specified type or a procedure.

For...Next Bounds a block of instructions that are repeatedly executed a
specified number of times.

Function Begins a user-defined function procedure.

Get Begins a Get procedure block within a Property procedure
definition.

Goto Performs an unconditional branch and continues execution at a
specified labeled instruction.

If...Then...Else...End Conditionally executes a block of embedded statements based upon the
value of an expression.

Loop Marks the end of a Do…Loop block of instructions and in some
instances also specifies the loop termination condition.

Module Begins a user-defined module section. All variable definitions and
procedures must be inside a Module or Class definition.

Next Marks the end of a For…Next block of instructions.

Property Begins a user-defined Property procedure.

ReDim Increases or decreases an array size by changing the array's upper
bounds.

390

Statements

Return Causes a user-define procedure to return control to the calling
procedure and optionally return a value.

Select...Case...End
Select

Evalua
and ex

tes a target expression, compares its value to a series of values
ecutes the block of statements associated with the first matching

value.

Set Begins a Set procedure block within a Property procedure definition.

Sub Begins a user-defined subroutine procedure.

While...End While Bounds a block of instructions that are repeatedly executed so long as
a specified expression evaluates to True.

391

GPL Dictionary Pages

Call Statement

This statement transfers control to procedure, and ignores its return value.

Call procedure_name([argument_list])
-or-
Call class_name.procedure_name([argument_list])
-or-
Call object_name.procedure_name([argument_list])

Prerequisites

Parameters

ocedure_name

 either user-
e(Sub) or a

a member.

The name of a object that is an instance of a built-in class of which
procedure_name is a member

t

edure. The
ment values,

arated by “,”, that correspond to the arguments in the called

argument, argument, argument

The type and number of arguments must match the parameters in the
declaration of the called procedure. For a ByVal parameter, the

 any expression of the matching type. For a ByRef
parameter, the argument must be a variable of the matching type.

Remarks

None

pr

The name of procedure to be called. This procedure can be
defined or built-in. It can be a function (Function), a subroutin
method of a built-in class.

class_name

The name of a built-in class of which procedure_name is

object_name

argument_lis

A list of argument values that are passed to the proc
ument_list may be empty, or may be a list of arguarg

sep
procedure.

argument can be

392

Statements

When a procedure is called, the current procedure is suspended until the called
procedure exits. Some procedures (e.g. Function procedures) can return a value. The

oes not allow the returned value to be accessed.

 as

Examples

Call my_subroutine(10, 20, 30)
my_subroutine(10, 20, 30) ' Same as above
Call Move.OneAxis(1, 30, 0, MyProfile)

See Also

Call statement d

The Call statement is optional. It can be omitted and the procedure_name specified
the first item in the statement.

Statements | Function Statements | Sub Statements

393

GPL Dictionary Pages

Case, Case Else Statements

lect...Case...End Select series of statements.
Each Case specifies possible matches for the value to be matched and delineates the
tatements to be executed if a match occurs.

These instructions are used within a Se

s

Select match_value
 Case test_expression, ..., test_expression
 case_statements
 :
[Case test_expression, ..., test_expression
 [case_statements]]
[Case Else
 [else_statements]]
End Select

Prerequisites

Can only be specified within a Select...Case...End Select series of statements.

Remarks

Please see the documentation on the Select...Case...End Select statements for an
explanation on the use of the Case and Case Else instructions.

See Also

Statements | Select...Case Statements

394

Statements

Class Statement

This statement begins a Class definition.

[Public | Private] Class class_name

Prerequisites

 may only be declared at the top level of a file, within a Module, or within another

Parame

class_name

e of the Class being defined.

Remarks

ion must always end with an End Class statement.

If a Clas ss in
which it lass
where it te.

Other a

Variables, co procedures defined within the Class are members of the Class
and can only be accessed by first specifying the Class or an object of the Class.

Examples

Public lass
 Public x As Single ' Variable x is in cc object

 Public y As Single ' Variable y is in cc object
d Class

See Also

Statem

A Class
Class.

ters

The nam

A Class definit

s is declared Public, it can be accessed from outside the Module or Cla
 is defined. A Private Class can only be accessed within the Module or C
 is defined. If the Public attribute is omitted, the Class defaults to Priva

ttributes such as Friend or Protected are not supported.

nstants, and

Class cc ' Begin the c

En

Sub test
 Dim obj As New cc ' Create object of class cc
 obj.x = 2.5 ' Set x value in new object
End Sub

ents | Module Statement

395

GPL Dictionary Pages

Const Statement

statement declares a read-only variable for use in a procedure. Use the Dim
r normal read-write variables.

This
statement fo

[Public | Private] [Dim] Const variable_name As type = init

Prerequ

• A Const statemen ar inside a class, procedure or a module.
ds cannot be used inside a procedure.

Parame

ame of the variable to be declared as a constant.

e to be assigned to this variable. The type must be a primitive
e primitive type keywords are:

cifies the initial value for the new varia
ng

r Const variables, or built-in system functions.

Remark

able. Everywhere else, an error
urs if an attempt is made to modify the value.

Public and Private are omitted, the default is Private.

Const variables declared within a class definition are implicitly Shared.

Unlike other declarations, only a single variable may be declared in one Const
statement.

Const variables declared within a procedure definition are initialized in the order in which
they occur and are known only within that procedure. Const variables outside procedures
may arbitrarily make forward references to other Const variables.

isites

t can only appe
• orThe Public and Private keyw

ters

variable_name

The n

type

The typ
type or a String. Th

Boolean, Byte, Double, Integer, Short, Single

init

An expression that spe ble. It must
have a constant value. It may only be composed of numeric or Stri
constants, othe

s

Only the Const statement can set the value of this vari
occ

The Dim keyword is optional.

If both

396

Statements

Examples

teger = 10
Const c2 As Integer = c1 + 1

See Also

Statem

Const c1 As In

Const ascii_a As Integer = ASC("a")

ents | Dim statements | ReDim statements

397

GPL Dictionary Pages

Delegate Statement

ling a
function or subroutine procedure using an object variable.
This statement creates a Delegate class that provides a means for indirectly cal

[Public | Private] Delegate Function delegate_name([parameter_list]) As type
-or-
[Public | Private] Delegate Sub delegate_name([parameter_list])

Prerequisites

None

Parameters

The name of the Delegate class to be defined.

ers that are passed to the procedure when it
is called via a Delegate object. The number and type of the parameters
in this list must match whatever procedure is subsequently associated
with a Delegate object. The list may be empty if the procedure has no

 The names of the parameters in this list are not important.
 or Sub statement definitions for more details on

ures, this is the type of the value returned by the
procedure associated with the Delegate object. This is not used if this
Delegate is for a Sub procedure.

Each Delegate statement defines a different Class that contains a template for indirectly
executing a type of procedure. A program can create Delegate objects that contain
pointers to Function or Sub procedures. These Delegate objects allow the associated
Function or Sub procedures to be called indirectly.

Delegate statements are equivalent to Class declarations and may occur at the Module
level or Class level.

The AddressOf operator is used when creating new Delegate objects. When a new
Delegate object is created, the type of the procedure and the argument list of the
procedure must be identical to the parameter_list and type specified in the corresponding
Delegate statement. If a non-shared class method is specified, a reference to the object

delegate_name

parameter_list

A template for the paramet

parameters.
See the Function
parameters lists.

type

For Function proced

Remarks

398

Statements

associated with that method is saved in the Delegate object and used when the
Delegate is referenced.

 Public Delegate Sub SubDel(ByVal arg As String, _
 ByRef out As String)

1) As SubDel
 Dim ii As Integer
 Dim ss As String

 del(0) = New SubDel(AddressOf TypeA)
 del(1) = New SubDel("TypeB")

 For ii = 0 To 1
)("message", ss)
e.WriteLine(ss)

 ' Output is "A message", "B message"

 End Sub

ublic Sub TypeA(ByVal ins As String, ByRef outs As String)
 outs = "A " & ins
End Sub

 ins As String, ByRef outs As String)
ins

End Sub
odule

le GPL2
s D_Class
alu As Double

ion Dcfun(ByVal arg As Integer) As String

 ss = "Dcfun, value: " & CStr(value) & ", arg: " & CStr(arg)
 Return ss
 End Function

 End Class

 Public Delegate Function FunDel(ByVal arg As Integer) As String

Public Sub Test
 obj As New D_Class

 Dim ss As String
 Dim dc_del As FunDel
 obj.value = 2

 "
 e
 End
End Module

See Also

Statements

Examples

Module GPL

 Public Sub Test
 Dim del(

 del(ii
 Consol
 Next ii

 P

 Public Sub TypeB(ByVal
 outs = "B " &

End M

Modu
 Public Clas
 Public v e
 Public Funct
 Dim ss As String

 Dim

 dc_del = New FunDel(AddressOf obj.Dcfun)

 ss = dc_del(4)
 Console.Writeline(ss) ' Output is "Dcfun, value: 2, arg: 4
 Console.Writeline(dc_del(4).L ngth) ' Output is "23"
 Sub

 | Function Statement | Sub Statement

399

GPL Dictionary Pages

Dim Statement

This statement declares a variable for use in a class or procedure.

[Public | Private | Shared] Dim variable_name [, variable_name …] As [New] type [=
[New] init]
-or-
[Public | Private | Shared] Dim variable_name [, variable_name …] As [New] type [=
[New] init], variable_name [, variable_name …] As [New] type [= [New] init], …

Prerequi

edure.

Parame

variable_name

, this field may include an array specification of
the form: variable_name(dim_1 [, dim_2 …]), where dim_1 through

type

The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the variable becomes an object variable.

xpression that specifies the initial value for the new variable. It does

specified, only a single copy of this variable is created. It exists
for all threads and persists even after the procedure in which is was defined has exited.

sites

• A Dim statement can only appear inside a class, procedure or a module.
• The Public and Private keywords cannot be used inside a proc
• The Shared keyword cannot be used at the module level.

ters

The name of the variable to be declared.

In addition to the name

dim_4 may be blank or contain an Integer constant defining the
maximum index of the corresponding array dimension. GPL allows up to
four dimensions.

The type to be assigned to this variable. The type may be a primitive
type, the name of a built-in class, or the name of a user-defined class.

init

An e
not need to be a constant.

Remarks

If the Public or Private keywords are present, the Dim keyword may be omitted.

If the Shared keyword is

400

Statements

All variables declared at the module level are implicitly shared, even though the Shared
keyword is not allowed.

procedure can only be accessed from within that procedure,

Shared Dim ent within a procedure, the
hat procedure, and it is initialized each time the procedure

ecified on a Dim statement within a class definition, a
iable exists in each object of that class type.

e field is specified, no init clause may be specified.

nly be specified for objects. If a New keyword is specified
ately following the As keyword, no initializer value may be specified.

it clause is specified, the default value for numeric variables is zero, and for object
les is Nothing.

place once when
ad begins execution. If an init clause is specified for a non Shared variable,

e initialization takes place each time the defining procedure is executed, or each time a
new object of the class is created.

Exampl

Dim ii As Integer

Shared Dim count As Integer
Dim ii, jj As Integer, x As Double
Dim ii As Integer = 10, x As Double = 2.5
Dim start As Location
Dim start As New Location

See Also

Statements

Shared variables within a
but their values persist and may be accessed by a subsequent procedure call.

If the keyword is not specified on a statem
variable exists only within t
runs.

If the Shared keyword is not sp
separate copy of the var

If more than one variable_nam

The New clause can o
immedi

If no in
variab

If an init clause is specified for a Shared variable, the initialization takes
the main thre
th

es

Dim ii As Integer = 10
Public ii As Integer = 10

 | Const Statement | ReDim Statement

401

GPL Dictionary Pages

Do...Loop Statements

ons bound a block of instructions that are repeatedly executed so long as
a specified expression evaluates to True or until the expression value becomes True.
These instructi

Do While condition
 [statements]
Loop

-or-

Do Until condition
 [statements]
Loop

-or-

Do
 [statements]
Loop While condition

-or-

Do
 [statements]
Loop Until condition

Prerequisites

None

Parameters

condition

interpreted as a True condition.

tatements

Remarks

This control structure either tests a condition at the start or the end of a block of
statements and repeatedly executes the statements so long as the condition is True or
until it becomes True. It can be used to implement program instruction loops.

Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is

s

Optional statement or list of statements that are repeatedly executed
within the control structure.

402

Statements

For the Do While and Do Until forms of this control structure, the condition test is
performed prior to the execution of the statements. If the condition permits the loop to be

statements will be executed once. At the conclusion of the loop, the test is
termine if the statements should be executed again. So long as the

In contrast, for the Loop While or Loop Until forms of this control structure, the
ts will always be executed at least one time. For these forms, the test is

rmed at the conclusion of the execution of the statements. So long as the condition
ecution, the statements will be repeated executed. However, if the condition

 not permit the execution of the loop on the first test, the statements will still have

this control structure, when the condition test is not satisfied, program
ution continues at the first statement following the Loop instruction.

e form of the condition test is specified, the condition is satisfied and execution
ments is permitted so long as the value of the condition is True. For the Until
 condition test, the condition is satisfied and execution is permitted until the
ecomes True.

mplex logic, multiple Do… Loop sequences can be nested to an arbitrary
depth and can be combined with other nested control structures. For example, a Do…

n contain an If…Then…End If sequence which can in turn contain a
While…End While sequence.

Execution of the Do loop can be terminated by a number of different methods: the
ndition can be set to a value that does not satisfied the test; execution can be explicitly

transferred to an instruction outside of the loop, e.g. by the execution of a GoTo

op statement. There can be none or seve statements within each

Examples

count = 10
Do ' Embedded statements always execute at least once
 If count = 5 Then
 Exit Do ' Prematurely stops Do loop
 End If
 count -= 1 ' Same as “count = count-1”
Loop Until count <= 0

See Also

Statements

executed, the
repeated to de
condition permits execution, the statements will be repeatedly executed. If not, execution
of the statements is terminated. In any case, if the condition does not permit the
execution of the loop on the first test, the statements are never executed.

statemen
perfo
permits ex
does
been executed one time.

For all forms of
exec

If the Whil
of the state
form of the
condition b

For more co

Loop ca

co

instruction; or an Exit Do instruction can be executed.

When an Exit Do statement is encountered, execution of the innermost Do…Loop
sequence is immediately terminated and execution continues at the instruction following
the Lo ral Exit Do Do
loop.

Dim count As Integer

 | For…Next Statements | GoTo Statements | If…Then…Else…End If Statements |
While…End While Statements

403

GPL Dictionary Pages

Else, ElseIF Statements

ute alternative blocks of instructions.
These instructions are used within an If…Then…Else…End If series of statements to
conditionally exec

If condition Then
 [statements]
[ElseIf elseif_condition Then
 [elseif_statements]]
 :
[ElseIf elseif_condition Then
 [elseif_statements]]
[Else
 [else_statements]]
End If

Prerequi

Can onl

Remarks

Please see th n
n the use of the Else and ElseIf instructions.

See Also

Statements

sites

y be specified within an If…Then…End If series of statements.

e documentation on the If…Then…Else…End If Statements for a
explanation o

 | If…Then…Else…End If Statement

404

Statements

End Statements

These s uch as
procedu

tatements mark the end of control structures and major project elements s
res or modules.

End Class
-or-
End Function
-or-
End Get
-or-
End If
-or-
End Module
-or-
End Property
-or-
End Select
-or-
End Set
-or-
End Sub
-or-
End While

Prerequi

tch the type of control structure or procedure that is

Remark

Each of the forms of the End statement are qualified by the type of control structure or
ts

See Als

Statem

sites

Must always follow and ma
referenced.

s

procedure being terminated. Please see the documentation on the related statemen
and program elements for information on the End statements, e.g. see the While…End
While Statements for information on the End While and see Sub for information on End
Sub.

o

ents | Function Statement | If…Then…Else…End If Statements | Module Statement |
Select...Case Statements | Sub Statement | While…End While Statements

405

GPL Dictionary Pages

Exit Statements

ecified type or a procedure. Execution is continued after the end
of the control structure or the call to the procedure.

These statements terminate the execution of a block of instructions within the innermost
control structure of a sp

Exit Do
-or-
Exit For
-or-
Exit Function
-or-
Exit Property
-or-
Exit Select
-or-
Exit Sub
-or-
Exit Try
-or-
Exit While

Prerequisites

Can only be specified within the control structure or procedure type that is referenced.

Remarks

Each of the forms of the Exit statement are qualified by the type of control structure or
procedure being terminated. Please see the documentation on the specific statements
and program elements for information on the Exit statements, e.g. see the While…End
While Statements for information on the use of Exit While and Sub for the use of Exit
Sub.

See Also

Statements | Do… Loop Statements | Exit Try Statement | For…Next Statements | Select...Case
Statements | While…End While Statements

406

Statements

For...Next Statements

 These instructions bound a block of instructions that are repeatedly executed a specified
number of times.

For variable = initial_value To final_value Step increment
 [statements]
Next variable2

Prerequisite

None

Parameters

variable

Required control variable that is incremented each loop and whose value
ines when looping is to be terminated. The variable can be any

ic type, i.e.. Byte, Integer, Short, Single or Double. Array

initial_v

Required expression that is evaluated once when the For loop is first
at the

final_value

Require e value is tested against the variable to
determine wh ution is to terminate. This expression is
evaluated once nd its value is
saved for subse ore, this value
will not change o

increment

Optional expres ich the variable is
changed each lo sted for being
greater than or l tion condition.
This expression ent is executed
and its value is s t tests by the Next statement.
Therefore, this value will not change once the red. If this
expression is no

statements

s

determ
numer
variables as well as object and structure fields are also permitted.
However, object and structure properties are not permitted.

alue

entered. The variable is set to this initial_value and has this value
start of the first pass through the execution of the statements.

d expression whos
en loop exec

when the For statement is executed a
quent tests by the Next statement. Theref
nce the For loop is entered.

sion that determines the amount by wh
op and also whether the variable is te
ess than the final_value as the termina
 is evaluated once when the For statem
aved for subsequen

For loop is ente
t specified, a step of 1 is assumed.

407

GPL Dictionary Pages

Optional statement or list of statements that are repeatedly executed
during each For loop.

2

Optional control variable, which if specified, must

variable

exactly match the
control variable in the matching For statement. This is only used when
the program is compiled (and not at runtime) to ensure that the Next and
For statements match.

Remark

This con ified number
of times
general

The For statement b aving their values
for future potential u e value of the
control v not exceed the
final_va variable’s value

s exceed the final_value, the statements are skipped and execution continues at the
st statement beyond the matching Next.

 final_value is not
exceeded, the for_loop_statements are executed again and the process is repeated.

ng terminates when the variable’s value is
less than the final_value.

t sequences can be nested to an arbitrary
depth and can be combined with other nested control structures. For example, a For loop

Next

Execution of the For loop can be terminated by a number of different methods: the
variable’s value can exceed the final_value; execution can be explicitly transferred to an
instruction outside of the loop, e.g. by the execution of a GoTo instruction; or an Exit For
instruction can be executed.

When an Exit For statement is encountered, execution of the innermost For…Next
quence is immediately terminated and execution continues at the instruction following

ach For loop.

Exampl

Dim count As Integer
r count = 1 To 10 ' Plan to execute 10 loops
 If count = 5 Then

 Exit For ' Prematurely stops For on 5 th loop
 End If

s

trol structure loops and repeatedly executes the statements a spec
 (iterations). It can be used to implement program instruction loops and is
ly more efficient that the other means of looping.

egins execution by evaluating its arguments and s
se by the matching Next statement. It then sets th

ariable equal to the initial_value. If the variable’s value does
lue, then the statements are executed for the first time. If the

doe
fir

If the statements are executed, execution proceeds until the Next instruction is
encounter. When the Next statement is executed, the increment is added to the variable
and its value is compared again to the final_value. So long as the

Otherwise, execution continues at the statement following the Next.

If the increment is a positive number, looping terminates when the variable’s value is
greater than the final_value. If negative, loopi

For more complex logic, multiple For…Nex

can contain an If…Then…End If sequence which can in turn contain another For…
sequence.

se
the Next. There can be none or several Exit For statements within e

es

Fo

408

Statements

Next count ' count is optional in the Next

See Also

Statements | Do… Loop Statements| GoTo Statements | If…Then…Else…End If Statements |
While…End While Statements

409

GPL Dictionary Pages

Function Statement

n
data type and any parameters that are passed when it is called.
This statement begins a user-defined function procedure. It specifies the function retur

[Public | Private | Shared] Function function_name([parameter_list]) As type

Prerequisites

• be declared within modules or classes.

Parameters

n_name

The name of function to be defined.

ciated
with a value when the procedure is called. The caller must provide

The list may be empty if the function has no parameters. Multiple
parameter list elements are separated by ",". Each element has the form:

eter_name As type

me of the variable associated
with this parameter. This name is known
only within the procedure being defined.

The type of this parameter. The type
may be either a primitive type or the
name of a built-in class. The primitive

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

• Procedures cannot be declared inside of other procedures.
Procedures can only

functio

parameter_list

A list of parameters that are passed to the procedure when it is called.
Each parameter appears as a locally defined variable and is asso

arguments that match the number and type of the parameters specified
in this statement.

[ByVal | ByRef] param

parameter_name

The na

type

type keywords are:

410

Statements

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of

nt value from the caller. The local procedure can change the
ithout affecting the caller’s value. A ByRef parameter references

Since object variables always deal with pointers to object values, the called
ne can always change an object value, even when passed using a ByVal
meter.

The type of the value returned by this function. The type may be a
primitive type, the name of a built-in class, or the name of a user-defined
class. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the returned type is an object.

Remarks

 Function procedure returns a value that can be used within an expression where a
value of the proper type is allowed. A Function can also be used with a Call statement or

A Function definition must always end with an End Function statement.

The returned value of function is specified by assigning a value to a variable named

If Public is specified, this procedure can be called from other modules or classes.

 class definition. If it appears, the
Function is associated with the entire class rather than with a particular object of that

ss type.

Exampl

y As Integer) As Integer

 * 2 ' Variable a gets value 18

See Also

argume
value w
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

routi
para

type

A

by itself as a statement when the returned value is not needed.

A Function procedure exits when it encounters the End Function statement, an Exit
Function statement, or a Return statement.

function_name, or by a Return statement.

Otherwise it can only be called from within the module or class where it is defined.

The Shared keyword can only be used within a

cla

es

Function add_function (x As Integer,
 add_function = x+y
End Function

= add_function(4, 5)a

411

GPL Dictionary Pages

Statements | Delegate Statement | End Function Statement | Exit Function Statement | Return
Statement | Sub Statement

412

Statements

Get Statement

This statement begins a Get procedure block within a Property procedure definition.

Get

Prerequi

This statement can only appear within a Property definition.
 that contains this statement must not specify the

ute.

Parame

e

Remark

The t procedure block must always end with an End Get statement.

 a procedure gets the containing Property, the Get procedure is executed. It is up
procedure to retrieve or compute the property value and return it.

 returned value of the Property is specified by assigning a value to a variable with the
same name as the Property or by a Return statement.

Examples

Class c
 Pri

 Public ReadOnly Property size As Integer

Return sizex2/2

 End Get
 End Property

End Class
 :

(obj.size) ' Displays value 22

See Also

Statements

sites

•
• The Property definition

WriteOnly attrib

ters

Non

s

Ge

When
to that

The

c
vate sizex2 As Integer = 44

 Get

Dim obj As New cc
Console.WriteLine

 | Property Statement | Set Statement

413

GPL Dictionary Pages

GoTo Statem

This sta s an unconditional branch and continues execution at a specified
labeled instruction.

ent

tement perform

GoTo label

Prerequ

Parame

Required program instruction label. A label must conform to the naming

Remark

 as the next instruction to be executed.

n. You should
utside of a control structure (e.g. a For…Next or

If…Then…Else…End If) to within a control structure.

To label an instruction, specify the label name followed by a colon (:) followed by any
standard instruction.

In general, GoTo instructions can make code difficult to read and debug. So, wherever
sible software should be written to make use of the other control structures, e.g.

If…Then…Else…End If, While…End While.

Exampl

 > 360 Or angle < -360 Then
 too_big = True

 GoTo Error_Exit ' An Else clause would be better,
d If ' but this shows how to use GoTo

 my_routine(angle)

See Also

isites

None

ters

label

conventions for either be a valid variable name (e.g. label3) or an integer
literal (e.g. 1000).

s

This instruction alters the sequence of program statement execution by setting the
label’ed statement

The referenced label’ed instruction must be in the same procedure as the GoTo
instruction and can be on an instruction before or after the GoTo instructio
not use a GoTo to jump from the o

pos

es

Dim too_big As Boolean, angle As Single
too_big = False
angle = 175.5
If angle

En

Error_Exit:

414

Statements

Statements | Do… Loop Statements | For…Next Statements | If…Then…Else…End If Statements |
While…End While Statements

415

GPL Dictionary Pages

If..Then...Else...End If Statements

ents that conditionally execute a block of embedded statements based
upon the value of an expression.
A series of statem

If condition Then
 [statements]
[ElseIf elseif_condition Then
 [elseif_statements]]
 :
[ElseIf elseif_condition Then
 [elseif_statements]]
[Else
 [else_statements]]
End If

-or-

If condition Then statement

Prerequisites

Parame

condition

Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

atements

Exp that is required if an optional ElseIf clause is specified. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

Optional statement or list of statements that are executed if the
associated elseif_condition evaluates to True.

None

ters

st

Optional statement or list of statements that are executed if the condition
evaluates to True.

elseif_condition

ression

elseif_statements

416

Statements

else_statements

Optional statement or list of statements that are executed if the Else
clause is present and the precedingcondition and elseif_condition values

False.

Remark

re tests one or more expressions and conditionally executes at most
atements or a single statement. It can be used to implement simple “either-

or” types logic or more complex decisions based upon multiple conditions with multiple
possible outcomes.

ition. If the condition
 program instructions

e skipped until the closing End If is encountered. If the condition is False, the
tements are skipped and processing continues at the first ElseIf, Else, or End If

clause that follows the statements. Any condition that evaluates to <>0 will be interpreted

An arbitrary number of ElseIf clauses can optionally follow the statements and precede
the Else. If the condition is False, the first ElseIf clause is processed by evaluating its
elseif_condition. If its elseif_condition is True, its elseif_statements are executed after

am instructions are skipped until the closing End If is
encountered. If its elseif_condition is False, its elseif_statements are skipped and
processing continues at the next ElseIf, Else, or End If clause that follows the
elseif_statements.

An If…Then group of statements can contain a single optional Else statement. If the
condition and all optional elseif_conditions have tested false, the optional
else_statements will be executed.

For more complex logic, multiple If…Then…End If statements can be nested to an
arbitrary depth and can be combined with other nested control structures. For example, a
For loop can contain an If…Then…End If sequence which can in turn contain another
If…Then…End If sequence.

Examples

Dim a As Boolean, b As Integer, c As Single
a = True
b = 20
If a AND (b > 10) Then ' This condition evaluates to True
 c = 3.14159 ' This assignment will be executed
Else
 c = 0 ' This assignment will be skipped
End If

See Also

Statements

all test

s

This control structu
one block of st

The If…Then statement begins by first testing the value of the cond
is True, the statements are executed, after which, all of the following
ar
sta

as a True value.

which all of the following progr

 | Do… Loop Statements | For…Next Statements | GoTo Statements | Select...Case
Statements | While…End While Statements

417

GPL Dictionary Pages

Loop Statements

These instructions mark the end of a Do…Loop block of instructions and in some
instances also specify the loop termination condition.

Loop
-or-
Loop Until condition
-or-
Loop While condition

Prerequisites

Must always f

ion on the Do…Loop Statements for an explanation of the
use of the Loop instructions.

See Als

Statements

ollow and match a Do statement within a procedure.

Remarks

Please see the documentat

o

 | Do... Loop Statement

418

Statements

Module Statement

This sta
procedu

tement begins a user-defined module section. All variable definitions and
res must be inside a Module or Class definition.

Module module_name

Prerequisites

Modules can only be declared at the top-level of a file.

Parame

module_

Remarks

A Module must always end with an End Module statement.

Module contains variable, procedures or class definitions. There can be multiple
modules defined in a single file.

All variables, procedures and classes defined within a module can be accessed

Examples

Module main_module
 Public Dim Start As Location ' All modules can access Start
 Private Dim x1 As Location ' Only this module can access x1

 Public Function add_function (x As Integer,y As Integer) As Integer

See Als

Statements

ters

name

The name of module that is being started.

A

anywhere in that module. Only Public variables, procedures and classes can be
accessed outside the module.

 ' All modules can access add_function

 add_function = x+y
 End Function
End Module

o

 | Class Statement | Dim Statement | End Module Statement | Function Statement | Sub
Statement

419

GPL Dictionary Pages

Next Statements

r…Next block of instructions. This instruction marks the end of a Fo

Next variable

Prerequisites

 statement within a procedure.

Remark

e documentation on the For…Next Statements for an explanation of the

See Also

Statements

Must always follow and match a For

s

Please see th
use of the Next instruction.

 | For…Next Statements

420

Statements

Prope

This statement begins a user-defined Property procedure. It specifies the return data
lled.

rty Statement

type and any parameters that are passed when it is ca

[Public | Private | Shared | ReadOnly | WriteOnly] Property property_name ([
parameter_list]) As type)

Prerequisites

• Properties can only be declared within class definitions.

Parame

property

Property to be defined.

parame

o the Property when it is called.
Properties often have an empty parameter list.

 defined variable and is associated
with a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement.

meter list elements are separated by ",". Each element has the form:

[ByVal | ByRef] parameter_name As type

e

e of the variable associated
with this parameter. This name is known

The type of this parameter. The type
may be a primitive type, the name of a
built-in class, or the name of a user-
defined class. The primitive type
keywords are:

ters

_name

The name of the

ter_list

A list of parameters that are passed t

Each parameter appears as a locally

The list may be empty if the Property has no parameters. Multiple
para

parameter_nam

The nam

only within the procedure being defined.

type

421

GPL Dictionary Pages

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable

ByVal ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of the

nt value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

ith pointers to object values, the
called routine can always change an object value, even when passed
using a ByVal parameter.

type

 are:

Boolean, Byte, Double, Integer, Short, Single

Remark

perty procedures that set a value must include a set procedure block that begins with
 statement and ends with an End Set statement. The property_name and

rameter_list may be used on the left-hand side of an assignment statement.

re block that begins
ement and ends with an End Get statement. A Get Property may be used

st like a Function within an expression or on the right-hand side of an assignment
atement, where a value of the proper type is allowed.

ion must always end with an End Property statement.

If the Property contains only a get procedure, the ReadOnly keyword must be specified.
 the Property contains only a set procedure, the WriteOnly keyword must be specified.

 statement, an Exit
Property statement or a Return statement.

If Public is specified, this procedure can be called from other modules or classes.
Otherwise it can only be called from within the class where it is defined.

becomes an object variable.

Either or

argume

Since object variables always deal w

The type of the value returned by this Property. The type may be either
a primitive type, the name of a built-in class, or the name of a user-
defined class. The primitive type keywords

If a class name is specified, the returned type is an object.

s

Property procedures may set a value or get (return) a value.

Pro
a Set
pa

A Property procedure that gets a value must include a get procedu
with a Get stat
ju
st

A Property definit

If

A property procedure exits when it encounters the End Property

422

Statements

If the Shared keyword appears, the property is associated with the entire class rather
than with a particular object of that class type.

Class cc
 Private size_value As Integer

 > 10 Then

 = value
 End Set

ze_value

perty

End Class

As New cc

e.WriteLine(obj.size) ' Displays 10

Statem

Examples

 Public Property size As Integer ' Set size, clip value at 10
 Set (value As Integer)
 If value
 value = 10
 End If
 size_value

 Get
 Return si
 End Get
 End Pro

 :
Dim obj
obj.size = 20 ' Sets size_value
Consol

See Also

ents | Get Statement | Set Statement

423

GPL Dictionary Pages

ReDim Statement

This statement increases or decreases an array size by changing the array's upper
bounds.

ReDim [Preserve] variable_name (dim_1[, dim_2 …])

Prerequ

The variable_name parameter must already be declared to be an array, with the same

Parame

The name of the array variable that is to have its size changed.

If the Preserve keyword is specified, all dimensions except the last
(right-most) must remain the same.

Remark

The previous contents of an array are lost when an ordinary ReDim statement is
Preserve keyword is specified, the previous contents of the array are

Exampl

 ReDim array(4,6)
 ReDim array2(10)
 ReDim array2(2,3) ' Invalid, cannot change # of dimensions
 ReDim Preserve array(3, 10)

See Also

Statements

isites

number of dimensions, in a Dim, Public, or Private statement.

ters

variable_name

dim_1, dim_2, …

The new upper bounds for each dimension of the array. ReDim cannot
change the number of dimensions, so the number of dimensions must
match the original array declaration.

s

executed. If the
preserved.

es

 Dim array(3,4) As Integer

() As String Dim array2

 ReDim Preserve array(4, 10) ' Invalid, can only change last dimension

 | Dim Statements

424

Statements

Return Statement

dure
and optionally return a value.
This statement causes a user-define procedure to return control the the calling proce

Return [value]

Prerequisites

Ret

Parameters

value

The value to be returned to the calling procedure if the current procedure
re.

d in Sub procedure.

Remark

The current procedure exits when it encounters a Return statement and execution
continues with the calling procedure. If there is no calling procedure, the current thread is
terminated with success.

In a function procedure, a Return is equivalent to assigning a value to the function-name

Exampl

Sub add_sub (x As Integer, y As Integer, ByRef result As Integer)
 result = x+y

See Also

Statem

urn can only appear within a procedure.

is a Function. The value field must be specified in a Function procedu
It must not be specifie

s

variable followed by an Exit Function statement.

es

Function add_function (x As Integer, y As Integer) As Integer
 Return x+y
End Function

 Return
End Sub

ents | Exit Function statement | Exit Sub statement

425

GPL Dictionary Pages

Select...Case...End Select Statements

Evaluates a target expression, compares its value to a series of values and executes the
block of statements associated with the first matching value.

Select match_value
 Case test_expression, ..., test_expression
 case_statements
[Case test_expression, ..., test_expression
 [case_statements]]
 :
[Case Else
 [else_statements]]
End Select

Prerequisites

None

Parameters

match_value

Required numeric or String expression that defines the value to be
matched.

test_expression

Required numeric or String expression that is specified with each Case
statement to define the values to be compared to the match_value.
Each Case statement must have at least one test_expression, but can
have more than one.

case_statements

Optional statement or list of statements that are executed if any of the
test_expressions for the associated Case statement match the
match_value.

else_statements

Optional statement or list of statements that are executed if the Case
Else statement is present and none of the test_expressions match the
match_value.

Remarks

This control structure executes one of several blocks of statements based upon matching
a numeric or String expression value. This control structure is similar to the

426

Statements

If…Then...ElseIf statements in that a series of values are compared to determine the
statements that are executed next. However, this control structure is more efficient and

n a series of If statements if a single value is to be compared to multiple
s.

 against each test_expression specified in the following
Case statements. When the first matching test_expression value is found, the associated

riate
case_statements, execution continues at the statement following the End Select. If no

xpression is matched and a Case Else is present, the else_statements are
ed. If no test_expression is matched and a Case Else is not defined, none of the

case_statements are executed and execution continues after the End Select

The a numeric or String
expression and can evaluate to any of the basic arithmetic data types (e.g. integer, real

ber, byte) or a String type. If the data type of a test_expression does not match that
of the match_value, it is automatically converted to the correct data type. If a String

ormed, the comparison is case sensitive, e.g. "A" and "a" are
considered different.

A Select Case or Case Else statement. Any
tional Case statements can be included, but only one Case Else is
he Case Else must occur just prior to the End Select.

If an Ex s,
executio es at the
instructi

Examples

Dim tar
target = "ab"
s1 = "a"
s2 = "b"
Select target
 Case s1, "d
 Console.Writeline("Wrong")
 Case s2
 Console.Writel
 Case s1 & s2
 Console.Writel
 Case Else
 Console.Writeline("Wrong")
End Select

See Also

Statements

convenient tha
possible value

The Select statement defines the value to be matched. The match_value is evaluated
once and then sequentially tested

case_statements are executed. Following the execution of the approp

test_e
execut

 m tch_value and each of the test_expressions can be either a

num

comparison is perf

 sequence must contain at least one
number of addi
permitted and t

it Select is encountered in either the case_statements or else_statement
n of the remaining statements in the block is skipped. Execution continu
on following the End Select.

get, s1, s2 As String

d"

ine("Wrong")

ine("Right")

 | Do… Loop Statements | For…Next Statements | GoTo Statements |
If…Then…Else…End If Statements | While…End While Statements

427

GPL Dictionary Pages

Set Stateme

This sta finition.

nt

tement begins a Set procedure block within a Property procedure de

Set (parameter_name As type)

Prerequisites

• This statement can only appear within a Property definition.

Parameters

The name of the parameter that contains the new value to which the

type

e type of the Property that contains the Set statement.

.NET, the clause (parameter_name As type) must always be specified.

lue for the property is copied
to the parameter_name variable, and the Set procedure is executed. It is up to that
procedure to use or save the new value as desired.

Class cc
 Private size_value As Integer
 Public WriteOnly Property size As Integer ' Set size, clip value at 10
 Set (value As Integer)
 If value > 10 Then
 value = 10
 End If
 size_value = value
 End Set
 End Property
End Class
 :
Dim obj As New cc
obj.size = 20 ' Sets size_value

• The Property definition that contains this statement must not specify the
ReadOnly attribute.

parameter_name

property is being set.

The type of the parameter_name parameter. This type must be identical
to th

Remarks

The Set procedure block must always end with an End Set statement.

Unlike VB

When a procedure sets the containing Property, the new va

Examples

428

Statements

See Also

Statements | Property Statement | Get Statement

429

GPL Dictionary Pages

Sub Statement

This statement begins a user-defined subroutine procedure. It specifies any parameters
that are passed when it is called.

[Public | Private | Shared] Sub subroutine_name([parameter_list])

Prerequisites

not be declared inside of other procedures.

Parame

The name of the subroutine to be defined.

A list of parameters that are passed to the procedure when it is called.
Each parameter appears as a locally defined variable and is associated
with a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement.

The list may be empty if the subroutine has no parameters. Multiple
parameter list elements are separated by “,’. Each element has the form:

[ByVal | ByRef] parameter_name As type

parameter_name

The name of the variable associated
with this parameter. This name is known
only within the procedure being defined.

type

The type of this parameter. The type
may be either a primitive type or the
name of a built-in class. The primitive
type keywords are:

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

• Procedures can
• Procedures must be declared within modules or classes.

ters

subroutine_name

parameter_list

430

Statements

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of
argument value from the caller. The local procedure can change the

without affecting the caller’s value. A ByRef parameter references
ller’s value directly. Any changes to a ByRef parameter in the

Remark

 statement, an Exit Sub
statement, or a Return statement.

If Public is specified, this procedure can be
nly be called from the mo

yword can only be used wit
ciated with ire cla

class type.

Examples

Sub add_sub (x As Integer, y As Integer, ByRef result As Integer)
 result = x+y
End Sub

add_sub(4, 5, a) ' Variable

See Also

Statements

value
the ca
called routine are reflected in the calling routine.

Since object variables always deal with pointers to object values, the called
routine can always change an object value, even when passed using a ByVal
parameter.

s

A Sub procedure does not return a value and cannot be used within an expression. A
Sub procedure can be used with a Call statement or by itself as a statement.

A Sub definition must always end with an End Sub statement.

A subroutine procedure exits when it encounters the End Sub

 called from other modules or classes.
dule or class where it is defined. Otherwise it can o

The Shared ke
subroutine is asso

hin a class definition. If it appears, the
ss rather than with a particular object of that the ent

a gets value 9

 | Delegate Statement | End Sub Statement | Exit Sub Statement | Return Statement | Sub
Statement

431

GPL Dictionary Pages

While

These instructions bound a block
a specified expression evaluates

...End While Statements

 of instructions that are repeatedly executed so long as
 to True.

While condition
 [statements]
End While

Prerequ

Parame

condition

Required expression tha True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

statements

Optional statement or list of statements that are repeatedly executed so
long as the condition evaluates to True.

Remarks

This control structure tests an expression and repeatedly executes a block of statements.
It can be used to implement program instruction loops.

The While statement begins execution by testing the value of the condition. If the
condition is True, the statements are executed. When the End While instruction is
encountered, the condition is tested again. If the condition is still True, the statements are
executed once again. This process is repeated until the condition tests False or the
statements explicitly execute an instruction that continues execution outside of the loop. If
the condition ever tests False, execution continues at the instruction following the End
While.

If the condition is False when the While first begins execution, the statements are
skipped, in which case, the statements are not executed even once.

For more complex logic, multiple While…End While sequences can be nested to an
arbitrary depth and can be combined with other nested control structures. For example, a
While loop can contain an If…Then…End If sequence which can in turn contain another
While…End While sequence.

isites

None

ters

t is interpreted as a

432

Statements

Execution of the While loop can be terminated by a number of different methods: the
condition can be set False prior to the execution of the End While statement; execution
can be explicitly transferred to an instruction outside of the loop, e.g. by the execution of

n Exit While instruction can be executed.

l Exit While statements within
each While loop.

Examples

Dim count As Integer
= 10
count > 0 ' This condition initially evaluates to True
count = 5 Then

 Exit While ' Prematurely stops While loop

t -= 1 ' Same as “count = count-1”
e

See Also

Statements

a GoTo instruction; or a

When an Exit While statement is encountered, execution of the innermost While…End
While sequence is immediately terminated and execution continues at the instruction
following the End While. There can be none or severa

count
While
 If

 End If
 coun
End Whil

 | D nts o… Loop Stateme | For…Next Statements | GoTo Statements |
If…Then…Else…End If Statements

433

Strings
String

The following pages provide detailed information on the properties, methods and
s that are available to assist in manipulating String variables. Internally, Strings

re implemented using much of the same structure and procedures as other built-in
Classes. Therefore, in addition to providing classic Basic functions for operating on

, e.g. Len, String variable properties and methods are also available for
performing many of the same operations.

A number of easy-to-use functions are provided for converting between String values
and numerical values, e.g. CStr, CDbl, CInt, Hex . Each of these built-in operations is
described in the section on Functions.

The table below briefly summarizes the properties and methods of String variables that
are described in greater detail in the following section.

 Summary

function
a

Strings

Member Type Description

String.Compare Method Compares the values of two Strings in either
a case sensitive or case insensitive manner.

string.IndexOf Method
Searches for an exact match of a substring
within the string variable and returns the
starting position if found (0-n).

string.Length Property Returns the number of characters stored in a
String variable.

string.Split Method

Divides the string variable value into a series
of substrings based upon a specified
separator character and returns the array of
substrings.

string.Substring Method
Returns a substring of the string variable
starting at a specific character position and
with the specified length.

string.ToLower Method Returns a copy of the string with all lower case
characters.

string.ToUpper Method Returns a copy of the string with all upper
case characters.

string.Trim Method Trims off characters or white space from the
start and end of a String variable value.

string.TrimEnd Method Trims off characters or white space from the
end of a String variable value.

string.TrimStart Method Trims off characters or white space from the
start of a String variable value.

The following table summarizes the String functions that are also described in greater
detail in the subsequent section.

Function Description

Asc (string) Converts the first character of a String to its equivalent
ASCII numerical code.

434

Strings

Chr (expression) Given a numerical ASCII code, a String that consists of
the equivalent ASCII character is returned.

Format (expression, format_s) Converts a numerical value to a String value based
upon a specified output format specification.

FromBitString (string, type,
big_endian)

Extracts a number that has been packed in its inte
bit format into a and returns the value of the

rnal
String

number.

Instr (start, string_t, string_s)
Searches for an exact match of a substring within a
String expression and returns the starting position if
found (1-n).

LCase (string) Returns a String value that has been converted to lower
case.

Len (string) Returns the number of characters in a String.

Mid(string, first, length)
Returns a substring of the string starting at the first
character position and consisting of length number of
characters.

ToBitString (expression, type,
big_endian)

Converts the value of an expression to a specific
numeric type and returns the internal bit representation
of the number packed into a String value.

UCase (string) Returns a String value that has been converte
upper case.

d to

435

GPL Dictionary Pages

String

Compares two String expressions either taking into consideration or ignoring the case of
e characters and returns an indication of the results.

.Compare Method

th

...String.Compare(string_a, string_b, ignore_case)

Prerequisites

None

Parameters

string_a

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements.

string_b

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements.

ignore_case

An optional numeric expression. If the value of this expression is True,
the comparison is performed ignoring the case of the characters, i.e. "A"
will be equal to "a". If this value is False or not specified, the comparison
is performed in a case-sensitive manner.

Remarks

This shared method compares the values of two String expressions and returns an
indication of the results of the comparison. Depending upon the value of ignore_case, the
comparison is either performed taking into account the case of characters or ignoring the
case of characters. The returned value is interpreted as follows:

String Relationship Returned result

 string_a > string_b > 0
 string_a = string_b = 0
 string_a < string_b < 0

String comparisons can also be performed using the standard comparison operators, i.e.
=, <>, <, >, <=, >=. When two Strings are compared using the comparison operators, the
comparison is always performed taking into consideration the case of the characters.

436

Strings

Examples

 ' Create a new string variable
Dim ii As Integer

See Als

Dim stg As String

stg = "aBcdef"
ii = String.Compare(stg, "abcdef") ' ii will be set <0

o

Strings

437

GPL Dictionary Pages

string.IndexOf Method

Searches for an exact match of a substring within a string variable and returns the
starting position if found (0-n).

...string.IndexOf(string_s, start)

Prerequisites

None

Parameters

nd

start

An optional numeric expression. This value specifies the first character

Remark

od searches the value of the string variable for an exact, case sensitive match
he specified string_s value. The search begins at the character specified by start and

continues with successive characters until either the first match is found or the end of the

Depending upon the outcome of the search, the following values are returned by this

string_s

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the substring value that must be fou
within the string value.

position that is tested in the string. If undefined, match testing begins
with the first character in string. Unlike the Instr function, a 0 specifies
the first character position in the string.

s

This meth
to t

string is encountered.

method.

String Values Returned Value

string_s is found in string Character position where the match begins. 0
indicates matched started at the first character of

string.
string has a zero length -1

string_s has a zero length start value
string_s not found in string -1

Examples

438

Strings

Dim stg_a As String ' Create string variable

NoPqRsTuVwXyZaBcDeFgHiJk"
g") ' pos will be set to 5

IndexOf

See Also

Strings

Dim pos As Integer
stg_a = "aBcDeFgHiJkLm
pos = stg_a.IndexOf("F
pos = stg_a. ("FG") ' pos will be set to -1
pos = stg_a.IndexOf("Fg", 10) ' pos will be set to 31

 | Instr Function

439

GPL Dictionary Pages

string.Length Property

Returns the count of the number of characters stored in a String variable.

...string.Length

Prerequi

None

Parameters

None

Remarks

Returns the Integer count of the number of characters that are stored in a String
variable. If the value of the String is empty, a count of 0 is returned.

Exampl

 stg As String ' Create a new string variable
 ii As Integer

stg = "123456"
 = stg.Length ' ii will be set to 6

See Als

sites

es

Dim
Dim

ii

o

Strings | Len Function

440

Strings

string.Split Method

Divides a String variable value into a series of substrings based upon a specified
separator character and returns the array of substrings.

...string.Split(separator_string)

Prerequisites

None

Parameters

tor_string

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these

Remarks

string variable searching for the specified separator
 previous separator (or from
 new separator is taken as

 substring and stored in a String array that is returned by this method. If the string
ariable does not contain a separator character, the entire contents of the string are

Examples

Dim stg_arr() As String ' Create array string variable
Dim stg As String
stg = "1,2 ,this is the 3rd string"
stg_arr = stg.Split(",") ' stg_arr(0) = "1"
 ' stg_arr(1) = "2 "
 ' stg_arr(2) = "this is the 3rd string"

See Also

Strings

separa

String elements. The first character of this expression defines the
separator character. For example, to split a line containing substrings
separated by commas, this String should be set to ",".

This method scans the value of the
character. Each time the separator is found, the text after the
the start of the string if this is the first separator) and up to the
a
v
copied to first element of the output array.

441

GPL Dictionary Pages

string.Substring Method

position and with a specified length.
Extracts and returns a substring of the string variable starting at a specific character

...string.Substring(first_pos, length)

Prerequisites

None

Parameters

first_pos

ngth

Remarks

This method extracts a substring from the value of a String variable and returns the
string and the

Exampl

g_a = "aBcdef"
g_result = stg_a.Substring(3, 2) ' stg_result will be set to "de"

See Also

Strings

A required numeric expression. This specifies the position of the first
character to be extracted and returned. Note, unlike the Mid function,
the first character position is 0 rather than 1.

le

An optional numeric expression. This value specifies the number of
characters to be copied into the returned value. If length is 0, the
returned substring will be empty. If length is not specified, all of the
remaining characters in the string starting at the first_pos will be copied.

results. The substring is specified by its starting character position in the
number of characters to be extracted.

es

Dim stg_a, stg_result As String ' Create two string variables
st
st

 | Mid Function

442

Strings

string

Returns a copy of a String value where all of the alphabetic characters have been
changed to lower case.

.ToLower Method

...string.ToLower

Prerequisites

None

Parameters

None

Remarks

his method copies the value of a String variable and converts all of the alphabetic
characters to lower case while leaving all of the non-alphabetic characters unchanged.

Examples

Dim stg_a, stg_b As String ' Create two string variables

_a = "aBcDeF"
_b = stg_a.ToLower ' stg_b set to "abcdef"

See Als

Strings

T

stg
stg

o

 | LCase Function | string.ToUpper | UCase Function

443

GPL Dictionary Pages

string.ToUpper Method

Returns a copy of a String value where all of the alphabetic characters have been
changed to upper case.

...string.ToUpper

Prerequisites

None

Parameters

None

Remarks

This me f the alphabetic
characters to upper case while leaving all of the non-alphabetic characters unchanged.

Examples

Strings

thod copies the value of a String variable and converts all o

Dim stg_a, stg_b As String ' Create two string variables
stg_a = "aBcDeF"
stg_b = stg_a.ToUpper ' stg_b set to "ABDCEF"

See Also

 | LCase Function | string.ToLower | UCase Function

444

Strings

string.Trim Method

Trims off characters or white space from the start and end of a String variable value.

...string.Trim(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define

haracter String is not specified, any
white space (e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

 If
trim characters are present in the string, trimming continues until a non-trim

character is encountered. Trimming is performed at both the start and at the end of the
ng variable.

Examples

 variables

stg_t = stg_a.Trim("12") ' stg_t set to "this is a test"
stg_t = stg_a.TrimStart("21") ' stg_t set to "this is a test221122"
stg_t = stg_a.TrimEnd("123") ' stg_t set to "112211this is a test"

rim() ' stg_t set to "another test"

See Also

Strings

the individual characters that are to be trimmed from the start and the
end of the string. If a trimming c

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value.
multiple

stri

Dim stg_a, stg_t As String ' Create string
stg_a = "112211this is a test221122"

stg_a = " another test "
stg_t = stg_a.T

 | string.TrimEnd| string.TrimStart

445

GPL Dictionary Pages

string.TrimEnd Method

Trims off characters or white space from the end of a String variable value.

...string.TrimEnd(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define

ring is not specified, any white space
(e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

ring variable and returns the resulting String value. If
multiple trim characters are present in the string, trimming continues until a non-trim

Examples

m stg_a, stg_t As String ' Create string variables

 is a test221122"

 "this is a test221122"
11this is a test"

"another test"

the individual characters that are to be trimmed from the end of the
string. If a trimming character St

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated st

character is encountered. Trimming is performed at the end of the string variable.

Di
stg_a = "112211this

m("12") ' stg_t set to "this is a test" stg_t = stg_a.Tri
stg_t = stg_a.TrimStart("21") ' stg_t set to
stg_t = stg_a.TrimEnd("123") ' stg_t set to "1122
stg_a = " another test "
stg_t = stg_a.Trim() ' stg_t set to

See Also

Strings | string.Trim| string.TrimStart

446

Strings

string.TrimStart Method

ers or white space from the start of a String variable value. Trims off charact

...string.TrimStart(trim_chars)

Prerequi

None

Parameters

trim_chars

An optional String expression. The characters of this expression define
ndividual characters that are to be trimmed from the start of the

string. If a trimming character String is not specified, any white space

Remarks

od trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value. If
multiple on-trim
charact able.

Examples

stg_t = stg_a.Trim() ' stg_t set to "another test"

See Als

Strings

sites

the i

(e.g. space and/or horizontal tab characters) is trimmed off.

This meth

 trim characters are present in the string, trimming continues until a n
er is encountered. Trimming is performed at the start of the string vari

Dim stg_a, stg_t As String ' Create string variables
stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("12") ' stg_t set to "this is a test"
stg_t = stg_a.TrimStart("21") ' stg_t set to "this is a test221122"
stg_t = stg_a.TrimEnd("123") ' stg_t set to "112211this is a test"
stg_a = " another test "

o

 | string.Trim| string.TrimEnd

447

GPL Dictionary Pages

Asc Function

Converts the first character in a String variable or expression into its equivalent ASCII
numerical code and returns the Integer result.

...Asc (string)

Prerequ

Parameters

string

A required String
method or concat

Remarks

Given a St
equivalent numerical valu
have a string that contains
values.

Examples

Dim ii As Integer
Dim ss
ss = C
ii = Asc(ss)

See Also

Strings

isites

None

 value. The string can be a String variable, constant,
enated value.

ring variable or expression, the first character in the String is extracted and its
e is returned as an Integer. This routine is convenient if you
 non-printable characters and you wish to operate on their

 As String
hr(10) ' Line feed character

 ' ii will be set to 10

 | Chr Function

448

Strings

Chr Function

Given a numerical ASCII code, a String that consists of the equivalent ASCII character is
constructed and returned.

...Chr (expression)

Prerequisites

None

Parameters

expression

A required numerical expression. The expression must have an Integer
value that ranges from 0 to 255.

Remarks

Given a numerical expression whose Integer value defines one of 256 possible ANSI
ASCII character codes, a String is constructed and returned that contains a single
character set to the ASCII code.

This routine is convenient if you wish to construct a String value that contains non-
printable characters.

Examples

Dim ii As Integer
Dim ss As String
ss = Chr(10) ' Line feed character
ss = Chr(GPL_CR) ' Carriage return character
ii = Asc(ss) ' ii will be set to 10

See Also

Strings | Asc Function

449

GPL Dictionary Pages

Forma

Converts a numerical value to a String value based upon a specified output format

t Function

specification.

...Format(expression, format_s)

Prerequ

e

Parame

expressi

 string. This value can be any numeric type, e.g.
Integer, Double, Boolean, etc.

format_s

. If format_s is not specified or is an empty
String value, the default format ("G") is utilized.

Remarks

This fun rmat_s
value sp the
format s output in
place o

To spec gle character
cifications described in the following table.

isites

Non

ters

on

A required numeric expression. This defines the numerical value that is
to be converted to a

An optional String expression. This String expression defines the
output format to generate

ction converts a numerical value to a String in a specified format. The fo
ecifies one of several pre-defined formats or defines a custom format. If
pecification is not recognized, the contents of format_s are copied to the

f a converted numerical value.

ify a pre-defined formats, format_s must contain one of the sin
spe

Predefined Formats Output Format

"G" or "g" General purpose format. Displays a maximum of 17 characters
including the sign character. Includes at least one integer digit
with no leading space characters or trailing zero's in the
fractional part. If the number is too large to display in 17
characters, this format automatically switches to scientific
notation.

"F" or "f" d format. Always di al digits plus at least
one o leading or trailing
spac

Fixe splays two fraction
integer digit and more as required. N
e characters are generated.

"E" or "e" Scie tes a value in the form of ntific notation. Genera

450

Strings

"[s]n " is a "+" or "-" sign character and
"xx"

.nnnnnnesxx" where "s
is the base 10 exponent.

The cu on is a chara e output

ully display the numerical value. If additional fractional digits exist, the

fractional part is rounded to the specified number of fractional digits and only the

stom format definiti cter by character literal description of th
format. For example, "0.00#" specifies that the output is to contain as least one integer
digit and two fractional digits with an optional third fractional digit. If the numerical value
contains more integer digits than specified by the format, additional digits are added to
the left to f

specified fractional digits are displayed. Leading and trailing space characters are not
included in the output.

The following table defines the character placeholders permitted in a custom format.

Custom Formats Output Format

"0" Displays a digit or "0" if none. If a "0" is to the left of the
decimal point, sufficient leading zeros are generated to display

gits. Likewise, a "0" to the
igit or a "0"

3 is displayed
mat function is

the specified number of decimal di
right of the decimal point always results in a d

cter. For instance, when the number 2chara
using the format "0000.0", the output of the For
"0023.0".

"#" Displays it or noth g. I e left o
point, a digit is displayed if it is non-zero else nothing i

 a dig in f a "#" is to th f the decimal
s added

he right of the
. For

at

to the output stream. Likewise, if a "#" is to t
decimal point, only non-zero digits are displayed
instance, when the number 23 is displayed using the form
"###0.#", the output of this function is "23.".

"." Decimal point placeholder. Separates integer and fractional
placeholders. Also, results in a "." being included in the output
stream.

"E" or "e" Scientific notation. Outputs a number in scientific notation.
This format always generates one digit to the left of the decimal
point and a sign character and two digits in the exponent, e.g.
"[s]n.nnnnesxx". The significance of the custom format is to
specify the number of fractional digits to be included.

Examples

Dim stg_a As String ' Create string variable
stg_a = Format(2323) ' Default ("G") format, "2323"
stg_a = Format(2323,"G") ' General ("G") format, "2323"
stg_a = Format(2323,"F") ' Fixed ("F") format, "2323.00"
stg_a = Format(2323,"E") ' Exponential ("E") format, "2.323000e+03"

stg_a = Format(.2,".0#") ' Outputs ".2"
stg_a = Format(.23,".0#") ' Outputs ".23"
stg_a = Format(-.23,".0#") ' Outputs "-.23"
stg_a = Format(2.1,".##") ' Outputs "2.1"
stg_a = Format(23.23,".000") ' Outputs "23.230"
stg_a = Format(23.23,"0000") ' Outputs "0023"
stg_a = Format(23.23,"0") ' Outputs "23"
stg_a = Format(-.23,"0.00e000") ' Outputs "-2.30e-01"

451

GPL Dictionary Pages

See Also

Strings | CStr Function | Hex Function

452

Strings

FromBitString Function

racts a number that has been packed in its internal bit format into a String and returns
er.

Ext
the value of the numb

...FromBitString (string, type, big_endian)

Prerequ

one

string

A required String expression whose 8-bit characters contain a sequence
of bits that are converted according to the type parameter to produce the
returned numeric value. The minimum length of this String depends on
the type parameter.

type

A required keyword that determines how the bit sequence in the string
parameter is interpreted. Must be one of the following: Byte, Short,
Integer, Single, Double.

big_endian

A required numeric expression that determines the order in which bytes
in the string parameter are processed. If the value is zero or False, the
bytes are assumed to be in "little-endian" order, which means the least
significant bytes in the value appear first in the String (PC/Intel format).
If the value is non-zero or True, the bytes are assumed to be in "big-
endian" order, which means the most significant bytes in the value
appear first in the String (Motorola format).

Remarks

This function operates on a String that contains a numeric value that has been packed in
a internal number format. This function extracts the value of the packed number by
converting the bits in the string according to the type specification. The 8-bit characters in
the string are concatenated together to form an 8, 16, 32, or 64-bit internal representation
of the number. The interpretation of the type parameter and the required number of
bytes in the string are presented in the following table.

isites

N

Parameters

Keyword Bytes Returned Value

Byte 1 Unsigned 8-bit value from 0 to 255
Short 2 Signed 16-bit integer

453

GPL Dictionary Pages

Integer 4 Signed 32-bit integer
Single 4 Single-precision IEEE floating point
Double 8 Double-precision IEEE floating point

The first byte of the string and any required successive bytes are used to obtain the bits.
The string parameter must be at least as long as the number of bytes required for the

When more than one byte is required, the order in which the bytes were packed into the
ecified by the big_endian parameter. If this parameter is True, the first byte of

the string is the most-significant byte in the value. This is the typical format for Motorola
sors such as PowerPC's. If this parameter is False, the first byte of the string is the
ignificant byte in the value. This is the normal format for PC’s (Intel) processors.

Dim stg As String
stg = T
Console

stg = ToBitString(-321, Short, True) ' Packs hex FE,BF

nsole.Writeline(FromBitString(stg, Short, True)) ' Prints -321

BitString(stg, Single, True)) ' Prints 123.4

 = ToBitString(123.4, Double, True) ' Packs hex 40,5E,D9,99,99,99,99,9A
sole.Writeline(FromBitString(stg, Double, True)) ' Prints 123.4

See Als

Strings

data type.

string is sp

proces
least-s

Examples

oBitString(23, Byte, True) ' Packs hex 17
.Writeline(FromBitString(stg, Byte, True)) ' Prints 23

Co

stg = ToBitString(56720, Integer, True) ' Packs hex 0,0,DD,90
Console.Writeline(FromBitString(stg, Integer, True)) ' Prints 56720

stg = ToBitString(123.4, Single, True) ' Packs hex 42,F6,CC,CD
Console.Writeline(From

stg
Con

o

 | ToBitString Function

454

Strings

Instr Function

Searches for an exact match of a substring within a String expression and return
starting posi

s the
tion if found (1-n).

...Instr(start, string_t, string_s)

Prerequisites

None

Parameters

start

A required numeric expression. This value specifies the first character
position that is tested in string_t. Unlike the IndexOf method, a 1
specifies the first character position in string_t.

string_t

ssion can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the target String that is searched for the
substring, string_s.

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these

nts. This specifies the substring value that must be found
e string_t value.

Remarks

This method searches the value of the string_t expression for an exact, case sensitive
match to the specified string_s value. The search begins at the character specified by
start and continues with successive characters until either the first match is found or the
end of the string_t is encountered.

Depending upon the outcome of the search, the following values are returned by this
method.

A required String expression. The String expre

string_s

String eleme
within th

String Values Returned Value

string_s is found in string_t Character position where the match begins. 1
indicates matched started at the first character of

string.
string_t has a zero length 0

455

GPL Dictionary Pages

string_s has a zero length start value
string_s not found in string_t 0

Examples

Dim stg_a As String ' Create string variable
Dim pos As Integer
stg_a = "aBcDeFgHiJkLmNoPqRsTuVwXyZaBcDeFgHiJk"
pos = Instr(1, stg_a, "Fg") ' pos will be set to 6

 ' pos will be set to 0
 ' pos will be set to 32

Strings

pos = Instr(1, stg_a, "FG")
pos = Instr(10, stg_a, "Fg")

See Also

 | string.IndexOf

456

Strings

LCase Function

Returns a copy of a String expression where all of the alphabetic characters have been
converted to lower case.

...LCase(string_exp)

Prerequisites

None

Parameters

string_exp

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.

Remarks

This fun cters to
lower ca nged, and returns the
resulting String value.

Examples

Dim stg
stg_res

See Also

Strings

ction evaluates a String expression, converts all of the alphabetic chara
se leaving all of the non-alphabetic characters uncha

_result As String ' Create a string variable
ult = LCase("aBcDeF") ' stg_result set to "abcdef"

 | string.ToLower | string.ToUpper | UCase Function

457

GPL Dictionary Pages

Len Function

Returns the count of the number of characters contained in a String variable or
expression.

...Len (string)

Prerequisites

Parame

tant,

Remark

Returns the Integer count of the number of characters contained in the specified string. If
e value of the string is empty, a count of 0 is returned.

Dim ii As Integer
ii = Len("123456") ' ii will be set to 6

See Also

Strings

None

ters

string

A required String value. The string can be a String variable, cons
method or concatenated value.

s

th

Examples

 | string.Length

458

Strings

Mid

Returns a substring of a String expression starting at the specified character position and
d number of characters.

 Function

consisting of a specifie

...Mid(string_exp, first_pos, length)

Prerequ

e

Parame

string_e

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.

eric expression. This specifies the position of the first
character to be extracted and returned. Note, unlike the Substring
method, the first character position is 1 rather than 0.

r of
characters to be copied into the returned value. If length is 0, the
returned substring will be empty. If length is not specified, all of the

 at the first_pos will be

Remarks

This function evaluates a String expression, extracts a substring from its value, and
returns the results. The substring is specified by its starting character position in
string_exp and the number of characters to be extracted.

Examples

Dim stg_result As String ' Create a string variable
stg_result = Mid("aBcdef", 4, 2) ' stg_result will be set to "de"

See Also

Strings

isites

Non

ters

xp

first_pos

A required num

length

An optional numeric expression. This value specifies the numbe

remaining characters in the string_exp starting
copied.

 | string.Substring

459

GPL Dictionary Pages

ToBitString Function

Converts the value of an expression to a specific numeric type and returns the internal bit
representation of the number packed into a String value.

...ToBitString (expression, type, big_endian)

Prerequi

Parame

s how the numeric value is interpreted
and how many bytes the output String will contain. Must be one of the
follo e, Short, Integer, Single, Double.

umeric expre t de hich bytes
 If

 in "little rde
significant bytes in the va ar fir

n-zero o e by
order, which means the m n

otorola form

Remark

s a numeric
type and packs the bits of the value into a Strin

 used to in pre
Depending upon the type, the converted value

String that will consis

The following table describes the output of this

sites

None

ters

expression

A required numeric expression whose value is converted.

type

A required keyword that determine

wing: Byt

big_endian

A required n ssion tha termines the order in w
in the String output are g
bytes are packed

enerated.
-endian" o

the value is zero or False, the
r, which means the least

lue appe
r True, th
ost significa

st in the String (PC/Intel format).
tes are packed in "big-endian" If the value is no
t bytes in the value appear first in

the String (M at).

s

This function evaluate expression, converts the results to a specified numeric
g that is returned. The numeric value is

sent the specified numeric type. written in the bit format ternally re
 may have 8, 16, 32, or 64-bits, which
t of 1, 2, 4, or 8 bytes. correspond to an output

 function.

Keyword Bytes Numeric Type Conversion

Byte 1 Un -bit vsigned 8 alue from 0 to 255
Short 2 Si it ingned 16-b teger

Integer 4 Signed 32-bit integer

460

Strings

Single 4 Single-precision IEEE floating point
Double 8 Double-precision IEEE floating point

When more than one
determined by the

 byte is retu orde
ian pa f thi

String is the most-significant byte in the value.
. If it

significant byte in the value. This rmal

Examples

Dim stg As String
stg = ToBitString(23, Byte, True) ' Packs hex 17
Console.Writeline(FromBitString(stg, Byte, True)) ' Prints 23

stg = ToBitString(-321, Short, True) ' Packs hex FE,BF
Console.Writeline(FromBitString(stg, Short, True)) ' Prints -321

stg = ToBitString(56720, Integer, True) ' Packs hex 0,0,DD,90
Console.Writeline(FromBitString(stg, Integer, True)) ' Prints 56720

stg = ToBitString(123.4, Single, True) ' Packs hex 42,F6,CC,CD
Console.Writeline(FromBitString(stg, Single, True)) ' Prints 123.4

stg = ToBitString(123.4, Double, True) ' Packs hex 40,5E,D9,99,99,99,99,9A
Console.Writeline(FromBitString(stg, Double, True)) ' Prints 123.4

See Also

Strings

rned, the
rameter. I

r of the bytes in the resulting String is
s parameter is True, the first byte of the big_end
 This is the typical format for Motorola
irst byte of the String is the least-processors, e.g. PowerPC’s is False, the f

is the no format for PC’s (Intel processors).

 | FromBitString Function

461

GPL Dictionary Pages

UCase Function

Returns a copy of a String expression where all of the alphabetic characters have been
converted to upper case.

...UCase(string_exp)

Prerequisites

None

Parameters

string_exp

A required String expression. string_exp can be a String variable,
ements.

Remarks

This function evaluates a String expression, converts all of the alphabetic characters to
abetic characters unchanged, and returns the

resulting String value.

Examples

Dim stg_result As String ' Create a string variable

UCase("aBcDeF") ' stg_result set to "ABCDEF"

See Also

Strings

constant, function, method or a concatenation of these String el

upper case leaving all of the non-alph

stg_result =

 | LCase Function | string.ToLower | string.ToUpper

462

Thread Class
Thread Class Summary

The following pages provide detailed information on the methods of the Thread Class.
ns for starting, stopping, and monitoring the execution of

independent threads.

The GPL system supports the simultaneous execution of up to 32 GPL program threads.
Each thread has its own execution stack and runs independently of all other threads. If
multiple threads are active, each thread executes for up to 1 millisecond before control
passes to the next ready thread.

When a GPL project is loaded, one procedure is designated as the main procedure in the
project file settings. This main procedure is started by the GDE interface, the web
Operator Control Panel, the Start console command, or automatically when the system is
restarted.

The main procedure can then start additional procedures as separate threads.

The table below briefly summarized the methods and properties that are described in
greater detail in the following sections

This class provides the mea

Member Type Description

New Thread Constructor
Method

Creates a thread object and associates it
with a procedure.

thread_object.Abort Method Stops execution of a thread such that it
cannot be resumed.

thread_object.Argument Property Sets or gets a numeric value that can be
used as a parameter for a thread.

Thread.CurrentThread Shared
Method

Returns a thread object for the currently
executing thread.

thread_object.Join Method Waits for a thread to complete execution,
with a timeout.

thread_object.Name Get Property Returns a String containing the name of
the thread associated with this object.

thread_object.Project Get Property Returns a String containing the name of
the project associated with this object.

thread_object.Resume Method Resumes execution of a thread that was
suspended.

Thread.Schedule Shared
Method

Changes the execution priority and thread
scheduling algorithm for the current
thread.

thread_object.SendEvent Method Sends an event to a thread to notify it that
a significant transition has occurred.

Thread.Sleep Shared
Method

Causes the current thread to stop
execution for a specified amount of time.

thread_object.Start Method Initializes and starts execution of a
procedure as an independent thread.

thread_object.StartProcedure Get Property Returns a String containing the name of
the start procedure associated with this

463

GPL Dictionary Pages

object.

thread_object.Suspend Method Suspends execution of a thread so that it
can be resumed.

Thread.TestAndSet Shared
Method writes a new value. Used for restricting

access to data shared between threads.

Atomically reads a numeric variable and

thread_object.ThreadState Get Property Returns an integer indicating the execution
state of a thread.

Thread.WaitEvent Shared
Method

Causes the current thread to wait for an
event.

464

Thread Class

New Thread Constructor

Constructor for creating a thread object and associating it with the procedure executed by
the thread.

New Thread(procedure_name, project_name, thread_name, stack_size)

Prerequisites

None

Parameters

procedure_name

A required string expression that specifies the name of the first
procedure to be executed by the thread. This procedure must be

e. If this parameter is omitted, the name of the
current project is assumed. Specifying this parameter is not supported by
GPL at this time.

ression that specifies the name of the thread to be
ocedure_name value is used

nal numeric expression that specifies the number of kilobytes of
tack to allocate for this thread. If zero or omitted, the default stack size

Remark

d in the system. It simply records the
cedure or project does not exist, no errors

Start method is called.

declared as Public. That is, the Public keyword must be specified in its
definition.

project_name

An optional string expression that specifies the name of the project that
contains procedure_nam

thread_name

An optional string exp
rea ameter is omitted, the prc ted. If this par

as the thread name.

stack_size

An optio
s
for this project is used.

s

This ctually create the threa method does not a
r use by the Start method. If the pronames fo

occur until the

Examples

465

GPL Dictionary Pages

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' Public procedure Test in the current project

lic procedure Test with thread name Thread1

See Als

Thread Clas

Dim thread1 As New Thread(“Test”,,“Thread1”) ' Create a thread object to execute
 ' Pub

o

s | thread_object.Start

466

Thread Class

thread_object.Abort Method

Stops a thread’s execution immediately and does not allow it to be resumed. The thread
must be restarted from the beginning.

thread_object.Abort()

Prerequisites

None

Parameters

None

Remarks

This me rnal
resources, just as if a console Stop command were issued. The thread cannot be

sumed, but can only be restarted using the Start method.

 not

Exampl

roject

Abort() ' Stop the thread and prevent resumption.
ead.CurrentThread.Abort() ' Stops thread in which it is executed

See Als

Thread

thod stops the thread associated with the object and deallocates inte

re

If you wish to be able to resume a thread, use the Suspend method instead.

If a thread executes the Abort method for itself, the thread exits with an error, but it is
deallocated in the same way as a separate thread

es

Dim thread1 As New Thread(“Test”)' Create a thread object to execute the
 ' procedure Test in the current p
thread1.Start() ' Start the thread
thread1.
Thr

o

 Class | thread_object.Start | thread_object.Suspend

467

GPL Dictionary Pages

thread_object.Argument Property

Sets or gets a numeric value that can be used as a parameter for a thread.

thread_object.Argument = <numeric_value>
-or-
... thread_object.Argument

Prerequisites

None

Parameters

None

Remarks

rticular thread. The value may be set
prior to the execution of a thread and can be accessed by the thread during its execution,

s serving as a parameter for the thread. This value may also be changed while the
thread is executing, but that is not its intended use.

 an array

Public Sub MAIN
 Dim t1 As New Thread("Test", , "Thread1")
 Dim t2 As New Thread("Test", , "Thread2")
 ThreadData(1)= "Thread data 1"
 ThreadData(2)= "Thread data 2"
 t1.Argument = 1
 t1.Start
 t2.Argument = 2
 t2.Start
End Sub

' The following thread writes "Thread data 1" then
' "Thread data 2"

Public Sub Test
 Dim index As Integer
 index = Thread.CurrentThread.Argument
 Console.WriteLine(ThreadData(index))
End Sub

See Also

Thread Class

This property associates a numeric value with a pa

thu

For example, this v ex toalue can be interpreted as an ind access an element of
that contains data for a thread.

Examples

Public ThreadData(16) As String

 | Thread.CurrentThread | thread_object.Name | thread_object.Start

468

Thread Class

Thread.CurrentThread Shared Method

Returns a thread object that corresponds to the currently running thread.

thread_object = Thread.CurrentThread()

Prerequisites

None

Parameters

None

Remarks

This shared method returns an object that corresponds to the currently running thread.

ss.
This object may be used to abort or suspend the current thread. It does not need to be
associated with a thread object, only the thread cla

Examples

Dim As Thread = Thread.CurrentThread() e a thread object mythread ' Creat
 ' for the current thread.
Thread.CurrentThread.Suspend () ' Suspend the current thread.

See Also

Thread Class

469

GPL Dictionary Pages

thread_object.Join Method

Waits for a thread to become idle, with a timeout. Returns -1 (True) if the thread is now
idle or 0 (False) if the timeout time was exceeded.

status = thread_object.Join(millisecond_timeout)

Prerequisites

None

Parameters

millisecond_timeout

The maximum time to wait for the thread associated with thread_object

Remarks

When this method is called, the calling thread waits until the thread associated with
ad_object becomes idle, or until the specified timeout value is exceeded. The

e of the method is -1 (True) if the thread is idle or if the thread does not
ist. The returned value is 0 (False) if the thread exists and is not idle. Normally a

ling
alue 0 is

 the Join method continues
waiting. It only completes with True when the thread is idle or deleted.

Examples

Dim thread1 As New Thread(“Test”)' Create a thread object to execute the
 ' procedure Test in the current project
Dim status As Integer
thread1.Start() ' Start the thread
status = thread1.Join(10000) ' Wait for the thread to complete with a
 ' 10-second timeout.
If status Then
 Console.Writeline(“thread1 is complete”)
End If

See Also

Thread Class

to become idle. A value of 0 means do not wait, just test if the thread is
idle. A value of -1 means do not timeout, wait forever for the thread.

thre
returned valu
ex
returned value of 0 indicates that the timeout time has been exceeded. If the cal
thread is ended externally and then resumed during the Join method, the v susp
returned even though the timeout time may not have been exceeded.

If the referenced thread is suspended or stops with an error,

 | thread_object.ThreadState

470

Thread Class

thread_object.Name Property

e name of the thread associated with a Thread
object.
Returns a String value indicating th

name_string = thread_object.Name

Prerequisites

None

Parameters

None

Remarks

This pro when
the Thr

Examples

read1 As New Thread("Test", , "Thread1") ' Create thread object
 ("Created thread: " & thread1.Name)

 ' Displays "Created thread: Thread1"

See Also

Thread Class

perty returns a String containing the thread name as originally established
ead object was created by its constructor.

Dim th
Console.Writeline

 | Thread Constructor | thread_object.Project | thread_object.StartProcedure

471

GPL Dictionary Pages

thread_object.Project Property

Returns a String value indicating the name of the project associated with a Thread
object.

name_string = thread_object.Project

Prerequ

Parameters

N

Remarks

T tu roject
th ct tor.

Exampl

thread object

 ' Displays "Thread project: Myproject"

See Also

Thread Class

isites

None

one

his property re
e Thread obje

rns a string containing the p
 was created by its construc

name as originally established when

es

Dim thread1 As New Thread("Test", "Myproject") ' Create
Console.Writeline ("Thread project: " & thread1.Project)

 | Thread Constructor | thread_object.Name | thread_object.StartProcedure

472

Thread Class

thread_object.Resume Method

Resumes execution of a thread that was previously suspended.

thread_object.Resume()

Prerequ

Parame

Remark

This method resumes the thread associated with the object, just as if a console Continue
command were issued. The thread may have been stopped by the Suspend method, or

Exampl

 ' procedure Test in the current project
thread1.Start() ' Start the thread

See Also

Thread Class

isites

None

ters

None

s

by a break point, or by the console Break command.

If the thread is not suspended, this method does nothing.

es

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the

thread1.Suspend() ' Suspend the thread for now.
Thread.Sleep(1000) ' Wait for 1 second
thread1.Resume() ' Resume the thread

 | thread_object.Suspend

473

GPL Dictionary Pages

Thread.Schedule Shared Method

e execution priority and thread scheduling algorithm for the current thread. Changes th

Thread.Schedule(priority, period, high_priority_time, phase)

Prerequisites

None

Parameters

priority

A required numeric expression that evaluates to an Integer that specifies
a new execution priority for the current thread. This value can range from
0 to 16. A value of 0 specifies that the current thread is to execute at the
normal user thread priority and using the standard thread scheduling.
Values > 0 specify a higher than normal priority using an alternate
scheduling algorithm. Larger values indicate higher execution priority.

period

A required numeric expression that evaluates to a Double value that
specifies the scheduling repetition rate in milliseconds. This value must
be an even power of 2, multiplied by 0.125 msec, and greater than
0.125. Valid values are: 0.250, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, etc. This
value is ignored if priority is zero.

high_priority_time

A required numeric expression that evaluates to a Double value that
specifies the duration, in milliseconds, during which the thread runs at
the priority level. This value must be greater than zero and less than the
period parameter. It may be a fractional value and will be quantized to a
multiple of 0.125. This value is ignored if priority is zero.

phase

A required numeric expression that evaluates to a Double value that
specifies the phase offset, in milliseconds, when the thread begins to
runs at the priority level. This value must be non-negative and less than
the period parameter. It may be a fractional value and will be quantized
to a multiple of 0.125. The trajectory generator thread always runs at
phase offset 0. This value is ignored if priority is zero.

Remarks

474

Thread Class

This shared method is associated with the Thread class, not a specific Thread Object.

ge when it executes (how it is scheduled) relative to
n more often or with greater regularity than it

cannot be absolutely guaranteed.

The standard thread scheduling algorithm for normal user threads is a simple round-robin
e where each standard thread gets to run for one millisecond before it is moved to
ck of the list of all other standard threads. User threads compete with each other
th standard and higher-priority system threads as shown in the table below. If the
 is heavily loaded, a given user thread may only get to run for 1 out of 8 or more

milliseconds. That may be undesirable for time-critical applications.

This method allows a thread to chan
other threads. This allows a thread to ru
would otherwise run. However, since the GPL system contains a number of system
threads that can never be preempted by user threads, the response of a user thread

schem
the ba
and wi
system

Thread Priority Thread Type Specific Threads

> 16 (High Servos, trajectory generator, most est) High-Priority System Threads device drivers

1-16 (High) User Threads that execute
Thread.Schedule

User Threads that execute
Thread.Schedule

0 (Sta s, web server,
FTP, serial console, disk driver ndard) Standard Priority Threads Standard user thread

An alternate scheduling algorithm, enabled by the Thread.Schedule method, allows a
critical user thread to run in a timely manner, ahead of all other standard-priority threads.

1. Every period milliseconds, offset by phase, a high priority user thread has its

2. s run for high_priority_time milliseconds, the thread's priority is

3. ets to the front of the round-robin
queue before the start of its next high priority period.

The diagrams below show how the Thread.Schedule method affects thread execution.
hese examples, we assume there are four user threads that are executing

uously.

d-robin scheduling

This algorithm is based on the POSIX sporadic scheduling policy, with the addition of a
phase parameter. The algorithm schedules threads as follows:

priority raised to the priority level above the standard thread priority.
After the thread ha
returned to the standard level, and it is placed at the end of the round-robin
queue of standard-level threads.
The thread may run at standard priority if it g

In t
contin

The first diagram shows standard roun where each vertical division
5 usec. represents 12

475

GPL Dictionary Pages

Each thread runs for 1 msec, which consists of eight 125 µsec clock ticks. At the end of
the 1 msec, the next thread begins, and the previous one goes to the end of the queue.

hread C issuing Thread.Schedule(1, 2, 0.25, 1)The next diagram shows the results of T .

This diagram shows Thread C having its priority raised every 2 msec, with a phase offset
 it runs at times 1, 3, 5, and 7. The thread's priority remains high for 0.25

msec (or 2 clock ticks). At the end of each interval, the thread's priority drops back to the
standar ther
threads the
start of because
Thread

The nex f Thread C issuing Thread.Schedule(1, 4, 0.25,

of 1 msec. So

d value and the thread is placed at the end of the round-robin queue. The o
 each continue to run for a total of 1 msec each. Note that the real time from
Thread D at time 2.25 to the end of Thread D at 3.5, greater than 1 msec
C preempts Thread D for 2 ticks.

t diagram shows the results o
0.5).

This diagram shows Thread C having it priority raised every 4 msec, with a phase offset
of 0.5 msec. So it runs at times 0.5 and 4.5. The thread priority remains high for 0.25
msec (or 2 clock ticks). At the end of each interval, the thread's priority drops back to
standard value and the thread is placed at the en

 the
d of the round-robin queue. The other

threads each continue to run for a total of 1 msec each. Note that at time 3.25, Thread C

e 0.75. Thread C still runs at high priority at time 4.5, its next
scheduling interval.

Thread.Schedule can be used to synchronize a thread with the trajectory generator
ocedural motions or using the method. See the

• When using Thread.Schedule, it is possible to incorrectly specify parameters so
that all standard-priority threads never get any time to run. If this happens, the

le to stop

runs at its normal priority because all the other threads in the round-robin queue ran after
Thread C completed at tim

when doing pr Move.SetRealTimeMod
Examples section below.

Additional notes and cautions:

serial console and the web interface will hang, and you will not be ab

476

Thread Class

your application. If the high priority thread is using the robot, pressing the E-
STOP button may cause the thread to stop. Otherwise you will need to reboot
your controller.

• If a high priority user thread is blocked because of I/O or robot motions, or if it
ep or Controller.SleepTick method, when it wakes up, it
ainder of its high_priority_time interval.

d by a higher priority user thread or a
inder of its high_priority_time interval once

the preempting thread is complete.
 round-robin scheduling provides a good balance for most

se the Thread.Schedule method unless necessary.

' Synchronize with the trajectory generator.

 ... ' Compute trajectory changes
e.SetRealTimeMod(changes)
troller.SleepTick(1) ' Wait until next trajectory tick

End While

See Also

Thread Class

issues a Thread.Sle
can still use the rem

• If a high priority user thread is preempte
system thread, it can still use the rema

• The standard
applications. Do not u

Examples

' Set period to be same as trajectory generator.
Thread.Schedule(1, Controller.Tick * 1000, 0.5, 0)
While True

 Mov
 Con

 | Thread.Sleep | Controller.SleepTick | Move.SetRealTimeMod

477

GPL Dictionary Pages

thread_object.SendEvent Method

Sends an event to a specific thread to notify it that a significant transition has occurred.

thread_object.SendEvent(event_mask)

Prerequisites

None

Parameters

event_mask

A required numeric expression that specifies the events to be sent. Each
bit in event_mask corresponds to a different event. Bit 0 (mask value
&H0001) corresponds to event 1. Multiple events may be specified. The
maximum event is 16, so the maximum value for event_mask is
&HFFFF.

nts are m nchronize one thread that is executing a GPL
s over

• The thread waiting for an event uses almost no CPU time, as opposed to polling
a global variable.

hen the target
ethod where

the worst-case latency is the polling period.

For more details on events and event handling, see the WaitEvent method

Examples

Dim tl As New Thread(“TestThread”)
tl.Start
 :
tl.SendEvent(&H10) ' Send event 5 to thread

See Also

Thread Class

Remarks

Eve essages that are sent to sy
project with another GPL project thread. Utilizing events has several advantage
setting and polling a global variable:

• There is very little latency between when a message is sent and w
thread wakes up and handles the event, as opposed to a polling m

 | Thread.WaitEvent

478

Thread Class

Thread.Sleep Shared Method

Makes the current thread wait until a specified number of milliseconds have passed.

Thread.Sleep(milliseconds)

Prerequisites

None

Parameters

milliseconds

The number of milliseconds that this thread should wait before continuing
execution with the next statement. May contain a fractional component.

e curre

Remark

This shared method is normally associated with the thread class, not an object. If it is

 milliseconds parameter may contain a fractional component that permits waiting for
illisecond. Any fraction is rounded up to a multiple of 0.125 milliseconds,

hich is the minimum wait time on a Precise controller.

s, sleep
ed to generate

ze

 a sleeping thread is suspended and resumed, the wait period restarts from the time that
the thread was resumed.

Examples

Thread.Sleep(5000) ' The current thread waits for 5 seconds

Dim thread1 As New Thread(“Test”) ' Create an object for a different thread
thread1.Sleep(1000) ' The current thread waits for 1 second

See Also

Thread Class

A value of 0 means allow another thread to execute, but continue
execution of the current thread immediately if no other thread is ready. A
value < 0 means wait forever, and is equivalent to invoking the Suspend
method for th nt task.

s

used with an object, the current thread always waits, regardless of the thread object
contents.

The
less than 1 m
w

Because of interactions between user threads and higher priority system thread
times can be subject to milliseconds of jitter. Software should not be us

an be used to minimishort time-critical intervals. The Thread.Schedule method c
interactions with other threads of equal priority.

If

 | Thread.Schedule | thread_object.SendEvent | Thread.WaitEvent

479

GPL Dictionary Pages

thread

Starts the execution of an independent thread.

_object.Start Method

thread_object.Start()

Prerequisites

The procedure associated with thread_object must be declared Public.

The procedure associated with thread_object must be loaded into memory and compiled
rrors.

Parameters

None

Remarks

This method begins a new thread that executes the procedure associated with the
read_object, just as if a console Start command were issued.

ad is currently paused, it is restarted by clearing the execution stack and
executing the procedure associated with the object. If a thread is stopped by using the

ate a thread object to execute the
blic procedure Test in the current project

hread

See Als

Thread

without e

th

If the thread is currently active, this method does nothing and returns without error.

If the thre

Abort method, it can only be restarted by using Start.

If the project or procedure associated with the object does not exist, or if there were any
errors compiling the project, this method issues an error.

Examples

Dim thread1 As New Thread(“Test”) ' Cre
 ' Pu

Startthread1. () ' Start the t

o

 Class | thread_object.Abort

480

Thread Class

thread

eturns a String value indicating the name of the start procedure associated with a
hread object.

_object.StartProcedure Property

R
T

name_string = thread_object.StartProcedure

Prerequisites

None

Parameters

None

Remarks

This property returns a String containing the name of the start procedure as originally
established by the Thread object constructor.

Examples

Dim thread1 As New Thread("Test", "Myproject") ' Create thread object
Console.Writeline ("Start procedure: " & thread1.StartProcedure)
 ' Displays "Start procedure: Test"

See Also

Thread Class | Thread Constructor | thread_object.Name | thread_object.Project

481

GPL Dictionary Pages

thread_object.Suspend Method

dent thread. Suspends the execution of an indepen

thread_object.Suspend()

Prerequi

None

Parameters

None

Remarks

This method suspends the thread associated with thread_object, just as if a console
eak command were issued. The thread stops at the end of the current GPL instruction.

The thread may be resumed where it left off by the Resume method or by a console

If the thread does not exist, an error occurs. If the thread exists but is not currently active,
no error i

This meth does not ty
to determine when the

Examples

Dim threa Thread(“Test”) ' Create a thread object to execute the

thread1.Start()
thread1.Suspend() ' Suspend the thread for now.
Thread.Sleep(1000) ' Wait for 1 second

ead1.Resume() ' Resume the thread

See Als

Thread

sites

Br

Continue command.

s generated.

od wait until the thread actually stops. Use the ThreadState proper
 thread is suspended.

d1 As New
 ' procedure Test in the current project

 ' Start the thread

thr

o

 Class | thread_object.Resume

482

Thread Class

Thread.TestAndSet Shared Method

m a variable and writes a new value. Used for
restricting access to data shared between threads.
Atomically reads a numeric value fro

old_value = Thread.TestAndSet(variable, new_value)

Prerequi

Parame

ble

quired numeric variable whose old value is first read and then
overwritten.

new_va

ssion whose value is written to variable.

Remarks

od permits a thread to read and write a variable value, without any possibility
er thread will change the value between the time it is read and the time it is

written.

In a mu rlock
data str y more than one thread. This interlocking can avoid
problems created by having one thread access a data structure that is invalid because its
data is

Examples

 While Thread.TestAndSet(lock_var, 1) <> 0

' Thread-safe unlock after using Test and Set

yR ar As Integer)
 var = 0
End Sub

' Thr -safe increment us

Sub Inc_variable (ByRef inc_var

sites

None

ters

varia

A re

lue

A required numeric expre

This meth
that anoth

lti-threaded application, this permits procedures to be developed that inte
uctures that are accessed b

in the process of being modified by another thread.

' Thread-safe lock using Test and Set

Sub Lock (ByRef lock_var As Integer)
 ' Loop while someone else has the lock

 Thread.Sleep (0)
 End While
End Sub

Sub Unlock (B

 lock_
ef lock_v

ead ing Test and Set

As Integer)

483

GPL Dictionary Pages

 Dim old_value As Integ
 Do
 old_value = inc_va
 Loop While Thread.Test
End Sub

See Also

Thread Class

er

r
AndSet(inc_var,old_value+1) <> old_value

484

Thread Class

thread

thread_object.

_object.ThreadState Property

Gets a numeric value indicating the execution state of the thread specified by

state_var = thread_object.ThreadState

Prerequisites

None

Parameters

None

Remarks

This property returns information about a thread’s execution state. The numeric value
returned by this property is described in the table below.

ThreadState Value Description

-1 The thread does not exist. Either it was never started or it was
stopped and deleted by an Abort method.

0 The thread has completed execution normally and is idle. It cannot
be resumed, but it can be restarted with Start.

1 The thread is stopping execution. This state is transient.
2 The thread is executing normally.
3 The thread is paused without error and can be resumed.
4 The thread is paused with an error. If it is resumed, it will retry the

instruction that caused the error.

Examples

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' procedure Test in the current project
thread1.Start() ' Start the thread
Console.Writeline(thread1.ThreadState) ' Display the state code for thread1

See Also

Thread Class

485

GPL Dictionary Pages

Thread.WaitEvent Shared Method

Wait for, test and clear events received by the current thread. Returns a mask indicating
the received events.

received_events = Thread.WaitEvent(event_mask, time_out)

Prerequ

Parame

ev

uired numeric hat s
Each bit in event_m ds

d. T um eve
event_mask is &HFFFF.

If event_mask is 0, curs, n
received events are returned.

A required numeric expression that s
 e

wait time is 2147 seconds.

thod do it, but on
. If < 0, this method does

Remarks

e is a bit m cating ev
value &H0001) corresponds to event 1. The m ts, or
only those matched by event_mask, as descr

hod s on the
the followin

isites

None

ters

ent_mask

A req expression t
ask correspon

pecifies the set of events to wait for.
 to a different event. Multiple events
nt is 16, so the maximum value for may be specifie he maxim

 no wait oc o events are cleared, and all

time_out

pecifies the maximum time, in
vents are received. The maximum milliseconds, to wait if no matching

If 0, this me es not wa ly tests pending events against the
 not timeout and waits forever. event_mask

The returned valu ask indi ents that have been received. Bit 0 (mask
ask indicates either all pending even

ibed below.

The behavior of this met
g table.

 depend combination of parameters as described in

event_mask
Value

time_out
Value

Description

 0 N.A.
The method does imply
returns a bit mas

 not wait for or clear any events, but s
k indicating all received events.

 <> 0 0 The method does h the not wait. It clears all events that matc

486

Thread Class

bits in event_mas events
that were cleared be used

nd clea .

k. It returns a bit mask indicating the
. This parameter combination may
r specific received events without waitingto return a

 <> 0 > 0

od wait
bit in event_mask ived. If a matching event was
previously received and not cleared, the method does not
wait.

Before returning, it clears all pending events that match the
its in event_mask, and returns a ting the

events that were cl

If n ve iod, this
me urns a v

The meth s until at least one event corresponding to a
 has been rece

b bit mask indica
eared.

nt is received before the timeout per
alue of 0.

o matching e
thod ret

 <> 0 < 0
This case is the sa
case except that it r
tim

me as "event_mask <> 0, time_out > 0"
 waits indefinitely for the events, and neve

es out.

Events are synchronization messages that are sent from one thread executing a GPL
project to another thread that is executing a GP

setting and polling a global va

• The thread waiting for ses a g

le late n when a message is sent and when the target
thread wakes up and handles the even

cy ing pe

Each thread can handle up to 16 different even
s is spe

y WaitEvent atical
when event_ = 0. A receiving thread can op waiting for events,

 servici tever
ies more tha nt, be

more than one event may be returned simultaneo

In a client-server situation, a client thread can place a command in a global variable, and
then send an event to the server. When the server receives the event, it can examine the
global variable to determine the detailed command.

Examples

Public main_thread As Thread

Public Sub Main
 Dim t1 As New Thread("Testthread")
 main_thread = Thread.CurrentThread
 t1.Start
 t1.SendEvent(&H10) ' Send event 5 to thread
 Thread.WaitEvent(&H8, -1) ' Wait for event 4, clear it
 Console.Writeline ("Main thread event received")
End Sub

L project. Utilizing events has several
riable: advantages over

an event u lmost no CPU time, as opposed to pollin
a global variable.

• There is very litt ncy betwee
t, as opposed to a polling method where
riod. the worst-case laten is the poll

ts. These 16 events are independent of
cified by the target thread and a bit within the events for all other thread

the thread’s
. An event

event_mask.

Events handled b
mask

 are autom ly cleared, except for the special case
simply lo checking

the returned bit mask, and ng wha
n one eve

events bits are set. If the WaitEvent
 sure to check all possible events, since

usly and be cleared.
event_mask specif

487

GPL Dictionary Pages

Public Sub Testthread
 Dim events As Integer
 events = Thread.WaitEvent(&H10,100) ' Wait with timeout
 If events = 0 Then

read event timeout")

 Console.Writeline ("Testthread event received")

 to main thread
End Sub

See Also

 Console.Writeline ("Testth
 Else

 End If
 main_thread.SendEvent(&H8) ' Send event 4 back

Thread Class | thread_object.SendEvent

488

Vision Classes
Vision Classes Summary

The following pages provide detailed information on the properties and methods for the
interface to the PreciseVision machine vision system.

This interface includes two classes: the Vision Class that manages communications
en GPL and PreciseVision and the VisResult Class that stores a single set of

results from a single vision tool. As a convenience, there is no explicit method for

system.

s below briefly summarize the properties and methods for each Class, which
scribed in greater detail in the following sections.

classes that implement the

betwe

connecting to PreciseVision. Whenever the Vision methods Process, Result or
ResultCount are executed, GPL automatically establishes a connection to the vision

The table
are de

Vision Class Member Type Description

New Vision Constructor
Method

Creates an empty Vision object. Does not
communicate with PreciseVision.

vision_obj.Disconnect Method Closes any open connection associated wit
a vision object.

h

vision_obj.ErrorCode Property

last
executed vision process. A value of 0

gative value

Returns the numeric error code for the

indicates success; a ne
indicates an error.

vision_obj.Instance Property
Sets and gets the number of the
PreciseVision instance that is asso
with a vision object.

ciated

vision_obj.IPAddress Property
Sets and gets the IP address of the PC t
is running the Pr

hat
eciseVision application

t. software associated with a vision objec

vision_obj.Process Method Connects to PreciseVision if there is
currently no connection.

Requests that PreciseVision execute a
vision process and waits for it to complete.

vision_obj.Result Method executed vision tool.
PreciseVision if there

Returns a VisResult object that contains a
single set of results from a previously

Connects to
 is currently no

tion. connec

vision_obj.ResultCount Method

Returns the number of sets of vision results
created by a vision tool the last time it was
executed. Connects to PreciseVision if
there is currently no connection.

vision_obj.Status Property

c value indicating the
status of a vision process:

0 = No vision process for this object,
1 = Process is running,
2 = Process complete but with error,

Returns a numeri

489

GPL Dictionary Pages

3 = Process complete with success.
Sets or gets a property value of a
PreciseVision tool or a general "system"
property for the vision server connected to a vision_obj.ToolProperty Property

vision object.

VisResult Class Member Type Description

New VisResult Constructor
Method

Creates an empty VisResult object. Not
useful since VisResult objects are
normally created by the
vision_object.Result method.

visresult_obj.ErrorCode Property

s
result. A value of 0 indicates success; a
negative value indicates an error. A
positive value indicates success with a
warning.

Returns the numeric error code for thi

visresult_obj.Info Property Returns the nth numeric information field
contained in this set of results.

visresult_obj.InfoCount Property Returns the number of numeric
information items in this set of results.

visresult_obj.InfoString Property Returns a String value if the set of vision
results includes text information.

visresult_obj.InspectActual Property
rty that

was tested in the vision inspection
Returns the value of the tool prope

process.

visresult_obj.InspectPassed Property
Returns True if a property of the vision
results satisfied the tool's vision inspection
criteria.

visresult_obj.Loc Property set of results
object.

Returns the position and orientation from a
as a Cartesian Location

visresult_obj.Type Property Returns the type of this set of results.
Currently always zero.

490

Vision Classes

vision_object.Disconnect Method

Closes the network connection associated with a vision object.

vision_object.Disconnect

Prerequisites

Parame

Remark

is method closes the TCP/IP connection to PreciseVision that is associated with a

Exampl

See Also

Vision Classes

None

ters

None

s

Th
vision object. No error occurs if there is currently no connection.

When a vision object is no longer referenced anywhere, the TCP/IP connection is
automatically closed.

es

Dim vobject As New Vision
vobject.Disconnect

491

GPL Dictionary Pages

vision_object.ErrorCode Property

Gets the Integer error code for the last executed vision process.

...vision_object.ErrorCode

Prerequisites

A Process method must have been executed using the vision_object and the execution

Parameters

Remarks

This pro s executed by the
vision_o 0 indicates success; a negative value indicates an error. If no
process was ever run, a value of 0 is returned. Please see the section on System Error

des in the Precise Documentation Library for a list of vision error codes and their
interpretation.

specific Vision Tool encountered an error
during execution, e.g. it didn't find what it was searching for. The

Exampl

Dim As New Vision

See Als

Vision C

must be completed.

None

perty returns the Integer error code for the last vision proces
bject. A value of

Co

This property is different from the visresults_object.ErrorCode. The
visresults_object.ErrorCode indicates if a

vision_object.ErrorCode indicates if a vision process could not be found or if a
communication error occurred between GPL and PreciseVision. This property never
signals an error if an individual tool fails for whatever reason.

If the vision_object.Status property returns a value of 2, indicating that an error has
occurred, the ErrorCode property contains the specific error code that describes the type
of error.

es

 vobject
vobject.Process("find_part") ' Execute find_part process
If vobject.ErrorCode <> 0 Then
 ' Handle error
End If

o

lasses | vision_object.Status | visresult_object.ErrorCode

492

Vision Classes

vision_object.Instance Property

the PreciseVision instance that is associated with a vision Sets and gets the number of
object.

bject.Instance = <integer_value> vision_o
-or-
…vision_object.Instance

Prerequisites

When this property is set, the vision object must not be connected to PreciseVision.

Parameters

None

Remarks

Multiple, independent instances (copies) of the PreciseVision application software can be
run on a single PC. When each copy of PreciseVision is started, its instance number
must be explicitly specified if it is not the first instance. By default the first copy of
PreciseVision is instance 1.

For some applications, a single Precise Controller may need to communicate with
multiple instances of PreciseVision or with a specific instance. This property allows a
GPL program to select the instance that is used as a vision server for the specified vision
object.

If the Instance property is not set, the default value is 1.

Examples

Dim vobject As New Vision
vobject.Instance = 2 ' Select server instance 2
vobject.Process("find_part")

See Also

Vision Classes | vision_object.IPAddress

493

GPL Dictionary Pages

vision_object.IPAddress Property

PreciseVision application software associated with a vision object.
Sets and gets the IP address (as a String value) of the PC that is running the

vision_object.IPAddress = <string_value>
-or-
…vision_object.IPAddress

Prerequ

n this property is set, the vision object must not be connected to PreciseVision.

Parame

None

Remarks

By defa dress
specifie 4).

plications, a single Precise Controller may need to communicate with more
ne PreciseVision server on different PCs. This property overrides the IP address

specified by DataID 424 for the connection made by the current vision object.

The pro n.nnn.nnn where
each nn ddress.

s property is not set, the value from DataID 424 is used.

Examples

Dim vob
vobject
vobject

Vision

isites

Whe

ters

ult, a Precise Controller connects to its PreciseVision server at the IP ad
d by the configuration parameter "Vision server IP address" (DataID 42

For some ap
than o

perties String value contains the IP address in the form nnn.nn
n field is a decimal number representing 8 bits of the 32-bit IP a

If the IPAddres

ject As New Vision
.IPAddress = "192.168.0.20"
.Process("find_part")

See Also

Classes | vision_object.Instance

494

Vision Classes

vision_object.Process Method

Issues a request to PreciseVision to execute a vision process and waits for the process
to complete.

vision_object.Process(vision_process_name)

Prerequi

 specified vision process must already be defined within the PreciseVision system.

Parame

PreciseVision process that is to be executed. This corresponds to the
name that is displayed in the "Process Manager" window in
PreciseVision.

Remarks

This method requests PreciseVision to execute the specified vision process. It then waits
until PreciseVision has completed the process. If PreciseVision does not respond within
30 seconds, an error exception is thrown.

Executing a vision process is the basic means that GPL utilizes to command
PreciseVision to take a picture and analyze it. From GPL's point of view, a vision process
is a single, indivisible operation. That is, after GPL starts a vision process, no results are
available until after the process completes its execution. When the process is done
running, GPL can then interrogate PreciseVision for information on the output of any
tool. Normally, a vision process consists of a command to take a picture (i.e. an
Acquisition Tool) followed by additional tools to process and analyze the picture. In the
simplest case, a process can consist of a single tool that operates on an existing picture.
At other times, a process can be quite complex and may consist of dozens of tools that
inspect multiple features of parts to verify that the part is correct.

In order for GPL to execute a process and retrieve the results, GPL has to know the
name that has been assigned to the process in PreciseVision and the names of any tools
for which results are desired.

Each time that a vision process is executed, all of the previous results of its tools are lost
and replaced by the newly computed results. However, if a different vision process is
executed using another Vision object, the results of first vision process are preserved.

The Status property can be used to determine if the process completed successfully.

The Process method performs communications with PreciseVision. If an Ethernet
network connection does not exist, a connection is automatically established. If a

sites

The

ters

vision_process_name

A required String expression that specifies the name of the

495

GPL Dictionary Pages

connection cannot be setup or the communication link fails for any reason, this method
will throw an exception.

vobject.Process("find_part")

r
End If

Vision

Examples

Dim vobject As New Vision

If vobject.Status <> 3 Then
 ' Deal with erro

See Also

Classes | vision_object.Status

496

Vision Classes

vision

ject that contains a single set of results from a vision tool.

_object.Result Method

Returns a VisResult Ob

...vision_object.Result(vision_tool_name, index, location_object)

Prerequisites

been executed using the vision_object and the execution
must be completed.

Parameters

vision_tool_name

An optional String expression that specifies the name of a specific
PreciseVision tool that was executed in the vision process associated
with vision_object. The tool name must match one of those listed in the
PreciseVision "Process Manager" window for the executed process. If a
tool name is specified, a single set of results generated by that tool will
be returned. If omitted, a single set of results from the final tool in the
vision process is returned.

index

An optional numeric expression indicating which set of results to return
for the selected tool. The numeric value can range from 1 to
vision_object.ResultCount. If omitted, the first set is returned.

location_object

(Future enhancement) An optional Cartesian Location Object whose
value is sent to PreciseVision when the result is requested. Depending
on where the camera is mounted and the particular vision tool, this
location value may be used to determine the returned vision result.
Details on what value to pass in this parameter are described in the
PreciseVision documentation for specific vision tools.

Remarks

This method requests PreciseVision to return a set of results from a tool that was part of
the previously executed vision process. If the vision tool generated multiple sets of
results, the index parameter is utilized to specify the set of results to be returned. The
results data can be fetched any number of times from any tool that is part of the vision
process until the vision process is executed again. When a vision process is executed
again, all of the old results are lost and a new set of results data will be available.

When this method is executed, it returns a VisResult Object whose data can be
accessed by the standard properties and methods available for that object class.

A Process method must have

497

GPL Dictionary Pages

For cameras mounted on a robot or for pictures of an object held by the robot, it may be
necessary to pass camera or robot location information to PreciseVision so that the result
location may be determined. In this case, the optional location_object parameter must be
specified.

d to determine if the previous vision process completed

This property performs communications with PreciseVision. If an Ethernet network
ist, a connection is automatically established. If a connection

cannot be setup or the communication link fails for any reason, this method will throw an
ion.

Examples

As New Vision
esult As VisResult

vobject.Process("find_part")
result = vobject.Result() ' Get result 1 of final vision tool
result = vobject.Result("hole1") ' Get result 1 of vision tool "hole1"
result = vobject.Result(, 2) ' Get result 2 of final vision tool

See Also

Vision C

The Status property can be use
successfully.

connection does not ex

except

Dim vobject
Dim r

lasses | vision_object.Process

498

Vision Classes

vision_object.ResultCount Method

Gets the number of results generated by a vision tool in the last executed vision process.

...vision_object.ResultCount(vision_tool_name)

Prerequi

 method must have been executed using the vision_object and the execution
e completed.

Parame

ol_name

ring expression that specifies the name of a specific
PreciseVision tool that was executed in the vision process associated

ecuted process. If a
at

l
 process is returned.

the

sites

A Process
must b

ters

vision_to

An optional St

with vision_object. The tool name must match one of those listed in the
PreciseVision "Process Manager" window for the ex
tool name is specified, the number of sets of results generated by th
tool will be returned. If omitted, the number of sets of results for the fina
tool in the vision

Remarks

This property returns the number of sets of results generated by a vision tool. This is
same value as the PreciseVision ResultCount tool property.

A value of 0 indicates that no results are available or that some type of error occurred

ine Fitter) will return at most one
set of results if a line can be fit or none if it is unsuccessful. On the other hand, the

eason, this method will throw an
exception.

Exampl

Dim ew Vi
Dim vresults
Dim ii As Integer

when the tool was executed. Depending upon the basic type for the vision tool, zero,
one, or multiple sets of results may be generated each time the tool is executed. For
example, the tool that extracts the best fit line (i.e. the L

general tool that locates parts (i.e. the Finder) can generate dozens of sets of results if
multiple identical parts are in the camera's field of view.

If one or more sets of results can be accessed, the Result method should be called as
many times as necessary to fetch the data for each set of results.

This property performs communications with PreciseVision. If an Ethernet network
connection does not exist, a connection is automatically established. If a connection
cannot be setup or the communication link fails for any r

es

 vobject As N
As VisResult

sion

499

GPL Dictionary Pages

Dim results As Intege
vobject.Process("find_part")

results = vobject.Res

For ii = 1 To results

 vresults = vobjec

Next ii

See Also

Vision Classes

r

ultCount()

t.Result(,ii)
 ' Process results

 | vision_object.Status

500

Vision Classes

vision_object.Status Pr

Gets the numeric statu

operty

s code for a vision process.

...vis atusion_object.St

Prerequis

No

Parameters

None

Remarks

This method returns th rocess associated with the
vision_object. The retu ed status codes are as follows:

ites

ne

e status code for the vision p
rn

Status Code Description

0 No vision process for this object
1 Vision process is running
2 Vision process completed but with error
3 Visio s completed with success n proces

At this time, the value 1 is not seen because the Process method always waits until the
vision process is complete. A no-wait vision process may be added as a future
enhancement.

If Status has a value is 2, the ErrorCode property can be used to determine the specific
ty curred. Note, this prop process did not
exist or if a communicatio s when a
Line Fit t find en
tool an rs, pleas

Examples

Dim Vision
vobje ind_part")
If vo <> 3

End If

See Also

Vision Class

pe of error that has oc erty returns an error if the
n error occurs. However, if a specific tool fails, such a

ter canno ough edges to fit a line, Status does not indicate an error. For
e see the visresults_object.ErrorCode property. alysis erro

vobject As New
ct.Process("f
bject.Status Then

 ' Handle non-successful process

es | vision_object.ErrorCode | visresults_object.ErrorCode

501

GPL Dictionary Pages

vision_object.ToolPropert

a
the vision server connect

y Property

lue of a PreciseVision tool or a general "system" property for
ed to a vision object.

Sets or gets a property v

vision_object.ToolProperty (property_name_string) = <property_value_string>
-or-
…vision_object.ToolProperty (property_name_string)

Prerequisites

None

Parameters

proper string

ed Stri
to get or set. T g is normally in the form:
tool_name.pro
defined in Prec

tool

Remarks

This its a
defin ciseV program to use the results of a
previo cess y a future vision process.

the possible property values
are described fully in the PreciseVision documentation.

Each t lProp en the
Precis er and
Ethernet net
c ti
communication link fail ny reason, this method will throw an exception.

A m
recognizes "System" as a special tool name. The information that can be exchanged
using this special name is defined in the following table.

ty_name_

A requir ng expression that contains the name of the tool property
his Strin

perty_name, where tool_name is the name of a tool
iseVision, and property_name is the name of a property

. within that

 property perm
e re

 GPL program to dynamically change the properties of a tool
d within P
us vision pro

ision. This capability allows a GPL
 to adjust or refine the tools used b

The vision tools available depend on what has been defined in your particular vision
application. The properties associated with each tool, and

ime a Too
e Controll

erty procedure is invoked, messages are exchanged betwe
 the PreciseVision system connected to the vision object. If an
ection does not exist when this property is referenced, a
cally established. If a connection cannot be setup or the
s for a

work conn
onnection is automa

s a means for trans itting system information to and from PreciseVision, ToolProperty

System.<property> Operation Description

DisplayMode

Defines the contents of the PreciseVision main window in the PC
screen. It accepts a single parameter, mode, that is interpreted as
follows:

 0 - Resets the display mode to the standard default PV display.

502

Vision Classes

All standard windows, toolbars, menus, etc. are visible and available
for use.
 1 - Display
wind
 2 - Displays only the camera window. The PV form border, title,
status bars and all dockable controls are hidden.
 3 - Minimizes the PV main window.

s only the camera window and the current Tool's
ow. The PV form border, title, and status bars are hidden.

Info

Returns "{PV Version},{CameraAcquireType},{Camera Status1,
…,Camera S
execute
properly connected to the system.

tatus6}. This indicates the version of PV that is being
d together with indications of which cameras have been

ImportProject

y
the currently

ns any processes or tools
re already loaded, "_r" is
. Also, any camera calibration

project is ignored.

Loads in the PreciseVision project contained in the file specified b
<property_value_string> and merges its contents with
loaded project. If the new project contai
whose names conflict with items that a
appended to the name of the new item
information that is contained in the new

LayOut

Selects one of the predefined panel layouts to be displayed within
the main PV window. Requires a single parameter, layout, whose
value is interpreted as follows:

 1 - Edit mode
 2 - Runtime mode
 3 - Calibration mode

LoadCal1 dCaln". If
Dynamically loads a specified calibration file into PreciseVision and
assigns it to camera #1. To load camera #n, specify "Loa
the calibration file cannot be located, a -4022 error code will be
returned.

LoadImage Loads an image from the file specified by <property_value_string>
into the camera display buffer.

LoadProject

g>. If

 System.ProjectModified

Deletes the currently loaded PreciseVision project and loads in the
project contained in the file specified by <property_value_strin
the currently loaded project has been modified, a -4023 error code
will be returned and the load will not be attempted. To ignore the
any project modifications, please see the
property.

Lock

s the "Lock/Unlock Application" button
u bar. If set to the string value "true",

the use nges from being made. If set to
"false", changes are again permitted.

Performs the same function a
in the PreciseVision Main Men

r interface prohibits any cha

MMToPixelTrans1

PixelToMMTrans1 (",") in

(Superceded by new CamCal properties) Read the values of the
calibration matrices for camera #1. The elements of each 3x3
transformation are return as 9 numeric values delimited by commas

 a String. The values are returned in the following order: t11,
ess the data for camera t12, t13, t21, t22, t23, t31, t32, t33. To acc

#n, specify ...Transn.

Position

ow relative to the PC's screen.
This property requires four parameters whose values are delimited
by ",":

 <xpos> - X position relative to the top-left of the screen
 <ypos> - Y position relative to the top-left of the screen
 <width> - Width of the main PV window (optional)
 <height> - Height of the main PV window (optional)

Positions and sizes the main PV wind

503

GPL Dictionary Pages

All units are in pixels.

ProjectModified been modified and you wish to l
the new changes, you can set this p

Returns or sets a
loaded vision proje

 True/False flag that indicates if the currently
ct has been modified. If the current project has

oad in a new project without saving
roperty to False. If this flag is

True and you attempt to load a new project, a -4023 error code will
rned. be retu

ProjectName
ProjectPath

Returns either the name of the currently loaded vision project or its file
path including the project name.

RefreshGraphics
Equivalent to pressing the "Refresh Camera Display Window
Graphics" button in PreciseVision. It redraws any graphics
generated by vision tools in the Camera Display window.

SaveImage{n} Stores the image contained in the specified camera buffer into the
file specified by <property_value_string>.

SaveProject Stores the currently loaded PreciseVision project into the file
specified by <property_value_string>.

TopMost

 0 - Normal (resets topmost property

Specifies whether the main PV window is on top of other windows
on the PC's screen. It requires a single parameter, mode, which is
defined as follows:

)
 1 - Keeps window on top

This property permits PV to stay on top of other applications while
the user clicks or drags other windows on the screen.

Zoom

Sets the "zoom" scale factor for the camera display window. It
requires a single parameter, scale_factor, that ranges from 0 to 5 in
steps of 0.1. A value of 0 will automatically set the zoom so that the
entire frame buffer will be displayed within the camera display
window.

In situations where a GPL program wishes to trigger the execution of a camera
calibration procedure, ToolProperty recognizes "Camcal" as a special tool name. For a
"Camera only" area calibration, the information that can be exchanged using the Camcal

l name is defined in the following table. too

Camcal.<property> Operation Description

Camera Sets the number of the camera to be used, "1" to "n".

CalType
ration to be performed. This

must be set to "1" for the simple stationary camera area
calibration.

Indicates the type of camera calib

CalErrorNum

CalErrorString executed
calibration wa

Returns an indication of whether or not the calibration process
without an error. CalErrorNum will be 0 if the

s successful.
CalFileName

CalSave
Saves the calibration results into the specified disk file.

Execute Initiates the calibration procedure.
SquareIsDark

SquareMinArea
SquarePitch

When the standard calibration target is utilized that consists of a
grid of squares, these parameters define the size and the pitch of
the squares in mm. The SquareDark indicates if the squares are

504

Vision Classes

SquareSize dark (1) or white (0). The SquareMinArea specifies the minimum
acceptable area of each square in pixels.

ResultMaxError
ResultNumCornerFound
ResultNumCornerUsed

ResultRMS

s statistical results of the calibration process. This
includes the maximum and RMS error that indicate how well the

umber of
corners of the grid of squares that were located and utilized.

Return

calibration target was matched, and information on the n

Threshold Define
proce

s the binary threshold applied during the calibration
ss to initially locate the squares in the grid (0-255).

Width
Height

X
Y

Defines the size and center of the AOI to be processed during the
calibration procedure. These parameters are in units of pixels.

If the calibration scale factors for a camera are to be explicitly set, the following
information can be exchanged using the Camcal tool name.

Camcal.<property> Operation Description

Camera Sets the number of the camera to be used, "1" to "n".

CalType
. This is

must be set to "0" for explicitly setting the values of the calibration
matrix.

Indicates the type of camera calibration to be performed

CalErrorNum

CalErrorString was successful.

Returns an indication of whether or not the calibration process
executed without an error. CalErrorNum will be 0 if the calibration

CalFileName
CalSave

Saves the calibration results into the specified disk file.

dxPixPerMM
dyPixPerMM

Explicitly specifies the pixel per MM scale factors in both the X and
Y directions.

Execute Initiates the calibration procedure.

Independent of the camera calibration method, the following properties can be utilized to
retrieve camera setup and calibration results information.

Camcal.<property> Operation Description

Camera Sets the number of the camera to be accessed, "1" to "n".

CameraFrameSize The actual camera image may be
Returns the camera frame buffer size as "Width, Height" in pixels.

 smaller than the frame buffer
size.

PixelPerMM Returns the average pixel per mm ratio for the specified camera.
PixelToMMTrans Returns the calibration matrices that convert between camera pixels

505

GPL Dictionary Pages

MMToPixelTrans

and units of millimeters. These matrices are computed as a result
of performing the camera calibration using the standard grid of
squares.

 each 3x3 transformation are return as 9 numeric
 by commas (",") in a String. The values are

correction.

ample, given a PixelToMMTrans value, a camera pixel
nate (Px,Py) can be converted to millimeters (adjusted for

perspective distortion) using the following equations:

 Cx = (t11*Px+t12*Py+t13)/pscale
 Cy = (t21*Px+t22*Py+t23)/pscale
 where
 pscale = (t31*Px+t32*Py+t33)

The elements of
values delimited
returned in the following order: t11, t12, t13, t21, t22, t23, t31, t32,
t33. These matrices are 3x3's to include perspective distortion

For ex
coordi

CameraToRobot

RobotToCamera are return as 16 numeric values delimited by comma
String. The values are returned in the following order: t11, t12,
t13, t14, t21, t22, t23, t24, t31, t32, t33, t34, t41, t42, t43, t44.

Returns the calibration matrices that convert between a camera's
frame of reference and a robot's frame of reference. These
matrices are computed as a result of performing a "robot vision
camera calibration". After a camera pixel coordinate has been
transformed to mm and corrected for perspective distortion using
the PixelToMMTrans, the camera coordinate value can be

mpute the

The elements of each 4x4 homogeneous calibration transformation
s (",") in a

For example, given a CameraToRobot value, a camera X, Y
position (Cx, Cy) in millimeters can be converted to a robot XYZ
position using the following equations:

 Rx = t11*Cx+t12*Cy+t14
 Ry = t21*Cx+t22*Cy+t24
 Rz = t31*Cx+t32*Cy+t34

multiplied times the CameraToRobot transformation to co
equivalent position in the coordinate system of a robot.

Examples

("system.loadcal1") = "C:\cal1.dat"

prop = vobject.ToolProperty("system.mmtopixeltrans1")

See Also

Vision Classes

Dim prop As String
Dim vobject As New Vision

object.ToolProperty("hist.angle")prop = v
vobject.ToolProperty

506

Vision Classes

visresult_object.ErrorCode Property

Gets the Integer error code for a vision results object.

...visresult_object.ErrorCode

Prerequisites

Remarks

None

Parameters

None

This property returns the Integer error code for the visresult_object. This is the same
value as the PreciseVision ResultErrorCode tool property.

A value of 0 indicates that the result was computed successfully and is valid. A positive
value indicates a non-critical error occurred during processing, but the result information
is valid. A negative value is a standard GPL error code and indicates an error occurred
when PreciseVision was computing the result. Please see the section on System Error

their

upon that tool are not processed. The dependent tools will also return a critical error
condition when they are queried. When a critical error is indicated, the other properties
for the visresult_object may not contain valid information.

Exampl

d If

See Also

Vision Classes

Codes in the Precise Documentation Library for a list of vision error codes and
interpretation.

When a critical error occurs, the associated tool and all of the tools that are dependent

es

Dim vresult As VisResult
vresult = vobject.Result()
If vresult.ErrorCode <> 0 Then
 ' Handle error
En

 | vision_object.ErrorCode

507

GPL Dictionary Pages

visresult_object.Info Property

Returns a Double value from the vision result object's numeric information array.

...visresult_object.Info(index)

Prerequisites

None

Parame

A required numeric expression that specifies the array index for the
information element that is to be returned. The first array element has an
index of 0. This parameter must have a value greater than or equal to
zero.

Remark

The common results values returned from the Vision Tools are accessed via standard

for the parts that it has located. This type of tool specific information is returned in the

please consult the "PreciseVision Machine Vision System, Introduction and Reference
nual". In the detailed descriptions for each tool, properties that are returned in the Info

array and their array index values are highlighted.

Exampl

Vision Classes

ters

index

s

properties of the VisResults Objects, e.g. the position and orientation of the results are
available from visresult_object.Loc. However, some tools return special numeric data
that is specific to the tool. For example, the Finder Tool returns the X and Y scale factors

visresult_object.Info array property.

For information on what data a tool returns in this property and the index of the data,

Ma

es

Dim vresult As VisResult
vresult = vobject.Result() ' Get a tool's results

nfo(2) > .5 Then If vresult.I
 …

See Also

 | visresult_object.InfoCount | visresult_object.InfoString | visresult_object.Type

508

Vision Classes

visres

Returns, as an Integer value, the number of elements in the vision result object's numeric

ult_object.InfoCount Property

information array.

...visresult_object.InfoCount

Prerequ

None

Parameters

None

Remarks

The visresult_object.InfoCount property returns the number of elements in the
visresult_object.Info array for the current vision result. The index values for accessing
the Info array range from 0 to InfoCount - 1.

tool, can return a variable number of numeric values. The InfoCount property allows a

e returned in the Info
array and their array index values are highlighted.

Exampl

Dim vresult As VisResult
m ii As Integer

 ' Get a tool's results
unt-1
t.Info(ii))

See Als

asses

isites

Some tools return special numeric data, which is specific to the tool, in the
visresult_object.Info array property. Some of these tools, for example the Edge Finder

program to determine how many values are actually returned.

For information on what data a tool returns in this property and the index of the data,
please consult the "PreciseVision Machine Vision System, Introduction and Reference
Manual". In the detailed descriptions for each tool, properties that ar

es

Di
vresult = vobject.Result()
For ii = 0 To vresult.InfoCo
 Console.WriteLine(vresul
Next ii

o

Vision Cl | vision_object.Info

509

GPL Dictionary Pages

visresult_object.InfoString Property

Returns a String value if the vision result object includes text results.

...visresult_object.InfoString

Prerequisites

None

Parame

Remark

he common results values returned from the Vision Tools are accessed via standard
properties of the VisResult Objects, e.g. the position and orientation of the results are

ch

For information on what data a tool returns in this property, please consult the
"PreciseVision Machine Vision System, Introduction and Reference Manual".

If a vision tool does not return any text data, this property returns an empty String ("").

Exampl

Console.WriteLine("Barcode Value = " & visRes.InfoString)

See Als

sses

ters

None

s

T

available from visresult_object.Loc. However, some tools return String data that is
specific to the tool. For example, the Barcode Reader tool returns a String that contains
the type and value of the barcode that was found. This property is used to access su
tool specific text data.

es

Dim vis As New Vision
Dim visRes As New VisResult
vis.Process("main")
visRes = vis.Result("read_barcode",1)

o

Vision Cla | visresult_object.Info | visresult_object.InfoCount | visresult_object.Type

510

Vision Classes

visresult_object.InspectActual Property

Returns a Double that indicates the value of the tool property that was tested in the
vision inspection process.

...visresult_object.InspectActual

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
the InspectActual property in PreciseVision.

Parameters

None

Remarks

This property returns the value of the vision tool property that was tested for the
PreciseVision inspection process. This is the same value as the PreciseVision
InspectActual tool property.

For many PreciseVision tools, a range of acceptable values can be set for a single results
property for the tool. For example, for the general object Finder Tool, the orientation
angle of any located parts can be tested to ensure that they fall within a specified range.

When the inspection criteria is set, each time the tool is executed, it automatically tests
each set of results to see if it satisfies the criteria. InspectActual is the property value
that was tested during this process. InspectPassed indicates the results of the test.

Examples

Dim vresult As VisResult
vresult = vobject.Result()

If vresult.InspectPassed = False Then ' Inspection failed?
 If vresult.InspectActual < 10 Then ' By how much?
 ...

See Also

Vision Classes | visresults_object.InspectPassed

511

GPL Dictionary Pages

visresult_object.InspectPassed Property

n results satisfied the tool's
vision inspection criteria.
Returns a Boolean that indicates if a property of the visio

...visresult_object.InspectPassed

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
spectPassed property in PreciseVision.

Parame

ne

Remark

This property returns a True or False indication of whether or not the set of results from a
ue as the

the In

ters

No

s

vision tool satisfied the specified inspection criteria. This is the same val
PreciseVision InspectPassed tool property.

For many PreciseVision tools, a range of acceptable values can be set for a single results
ample, for the general object Finder Tool, the orientation

 be tested to ensure that they fall within a specified range.

 the inspection criteria is set, each time the tool is executed, it automatically tests
ach set of results to see if it satisfies the criteria and sets the value of InspectPassed
ppropriately. If the inspection fails, the tool is still processed in the normal fashion as

ependent upon the failed result. However, both the failed tool
dependent tools will have their InspectPassed set to False.

As a convenience, the tool property value that was tested is returned in
visresults_object.InspectActual.

Examples

Dim vresult As VisResult
vresult = vobject.Result()

If vresult.InspectPassed = False Then ' Inspection failed?
 If vresult.InspectActual < 10 Then ' By how much?
 ...

See Also

Vision Classes

property for the tool. For ex
angle of any located parts can

When
e
a
well as any tools that are d
and any

 | visresults_object.InspectActual

512

Vision Classes

visresult_object.Loc Property

Returns a Location Object containing the position and orientation information from a
vision result object.

...visresult_object.Loc

Prerequi

 a vision tool whose output includes

Parameters

Remark

This property returns the position and orientation results data from a vision tool and

sites

Only returns meaningful data for results generated by
the ResultAngle, ResultXPos, and ResultYPos properties in PreciseVision.

None

s

provides the information in the form of a Cartesian Location Object. The position and
orientation data are derived from the PreciseVision ResultXPos, ResultYPos and
ResultAngle tool properties.

While not all vision tools generate position and orientation data, many do. For example,
the general purpose object Finder tool returns the position and orientation of matched
parts. Likewise, the Point-Line Frame tool returns the position and orientation of its
computed reference frame.

llow this data to be easi within a GPL procedure, the Loc property returns a
ct that is compute has
obo refer
alib ta an
is can

rt or can be combined ith oth

seVision manual for in
rpret this data.

Examp

sResult
ation

Dim x, y, z As Double
vresult = vobject.Result() a to

 posi
 on "

y = visloc.Y ' Vision "ResultYPos"
 esultAngle"

See Also

To a ly utilized
Cartesian Location Obje
been translated into the r

d from the PreciseVision tool results but
ence frame. This translation is a defined by t's world

PreciseVision's camera c
mounted on the robot). Th

ration da
Location

w

d the camera mounting (e.g., stationary, or
then be used as the reference frame for

gripping a pa

Please see the Preci

er data to perform further analysis.

formation on which vision tools return these
properties and how to inte

les

Dim vresult As Vi
Dim visloc As Loc

 ' Get
 ' Get
 ' Visi

ol's results
tion/orientation output
ResultXPos"

visloc = vresult.Loc
x = visloc.X

z = visloc.Roll ' Vision "R

513

GPL Dictionary Pages

Vision Classes | visresult_object.Info

514

Vision Classes

visres

de from a visi s

ult_object.Type Property

Returns an Integer type co on re ult object.

...visresult_object.Type

Prerequ

Parame

Remarks

This method returns the numeric Type code for a vision result object. Currently, all vision
results are of type 0, so this property always returns 0.

This property will be used in the future to enhance the VisResult class.

Examples

Dim vresult As VisResult
vresult = vobject.Result()
If vresult.Type = 0 Then
 ...

See Also

Vision Classes

isites

None

ters

None

515

XML Classes

sses used to create, parse,
and modify XML (eXtensible Markup Language) documents. These classes handle XML
text documents by converting them to and from a tree structure that is stored in the

 consists of nodes for items in the
document, arranged in a tree that reflects how items in the text document are nested.

e is constructed using a subset of the Document Object Model (DOM) Core
ces as described in: http://www.w3.org/TR/REC-DOM-Level-1

XML Classes Summary

The following pages provide detailed information on the cla

controller’s memory. A parsed XML document tree

The tre
Interfa and methods similar

e found in Visual Basic.NET.

asses in GPL to handle XML document objects.

cts operate on the top-level of a DOM tree, which contains an entire
he nodes within the tree contain the data from the document. The

XmlDoc methods deal with the document as a whole, for example loading it into memory
or savin te XML
docume tree
cannot exist without an XmlDoc object.

mlNode Class objects point to individual nodes in a DOM document tree. Its methods
support accessing or modifying node data or properties, and adding or removing nodes in
the tree structure. These objects point to DOM nodes but do not actually contain the
DOM nodes. When an XmlNode object is created or destroyed, the underlying DOM
nodes are not affected provided that they are part of a DOM tree.

to thos

There are two built-in cl

XmlDoc Class obje
XML document. T

g it to a file. There is one and only one XmlDoc object for each separa
nt, although there can be multiple pointers to this object. An XML DOM

X

XmlDoc Class Member Type Description

New Constructor Creates a new document tree with t
Method

he
specified name.

xmldoc_obj.CreateNode Method Returns a new XmlNode object for this
document with the specified type, and name.

XmlDoc.DecodeEntities Shared
Method

Converts a String containing encoded XML
entities into raw text.

xmldoc_obj.
DocumentElement

Returns the XmlNode element that is the root
of the document. Method

XmlDoc.EncodeEntities Shared
Method

Converts special characters in a String to
XML entities.

xmldoc_obj.ErrorCode Get Property Returns the last parser error code number, or
0 if no error.

XmlDoc.LoadFile Shared
Method

Loads and parses an XML text document from
a file and returns the created XmlDoc DOM
tree object.

XmlDoc.LoadString Shared
Method

Parses an XML text document from a String
and returns the created XmlDoc DOM tree
object.

xmldoc_obj.Message Get Property Returns the last parser error message, or “” if
no error.

xmldoc_obj.SaveFile Method Converts a DOM tree document to the XML
text format and writes the data to a file.

516

XML Classes

xmldoc_obj.SaveString Method Converts a DOM tree document to the XML
text format and writes the data to a String.

The XmlNode class interface is summarized in the table below:

XmlNode Class Member Type Description

xmlnode_obj.AddAttribute Method Adds an attribute node as a child of this
node.

xmlnode_obj.AddElement Method Adds an element node as a child of this
node. Includes an optional value.

xmlnode_obj.AddElementNode Method
Adds an element node as a child of this
node. Returns an XmlNode object for the
new node. Includes an optional value.

xmlnode_obj.AppendChild Method Appends a new child node as the last child
of this node. Merges text nodes.

xmlnode_obj.ChildNodeCount Get Returns the number of children of this
Property node.

xmlnode_obj.Clone Method
Returns a clone of this node. Op
recursively clones the subtree

tionally
under this

node.
xmlnode_obj.FirstChild Method Returns the first child of this node.

xmlnode_obj.GetAttribute Method the specified attribute that is a chil
node.

Returns a String containing the value of
d of this

xmlnode_obj.GetAttributeNode Method
Returns the node corresponding
sp

to the
ecified attribute that is a child of this

node.

xmlnode_obj.GetElement Method
Returns a String containing the value of
the specified element that is a child of this
node.

xmlnode_obj.GetElementNode Method
ng to the

specified element that is a child of this
node.

Returns the node correspondi

xmlnode_obj.HasAttribute Method Returns Tr ified attribute is a ue if the spec
child of this node.

xm j.lnode_ob HasChildNodes Get
Property

Returns True if the node has any non-
attribute child nodes.

xmlnode_obj.HasElement Method Returns True if a specified element is a
child of this node.

xmlnode_obj.InsertAfter Method
Inserts a new node as a child of this node
after a referenced child node. Merges text
nodes.

xm .lnode_obj InsertBefore Method
Inserts a new node as a child of this node
before a referenced child node. Merges
text nodes.

xm jlnode_ob LastChild Method Returns the last child of this node.

xmlnode_obj.Name Get Returns the node name as a String. Property
xmlnode_obj.NextSibling Method Returns the next sibling of this node.

xmlnode_obj.OwnerD tocumen Returns the XmlDoc associated with this Method node.
xmlnode_obj.ParentNode Method Returns the parent of this node.

517

GPL Dictionary Pages

Method Returns the previous sibling of this node. xmlnode_obj.PreviousSibling

xmlnode_obj.RemoveAttribute Removes a specified attribute from this
node's children. Method

xmlnode_obj.RemoveChild Method Removes a child node from the list of
children for this node.

xmlnode_obj.RemoveElement Method Removes a specified element from this
node's children.

xmlnode_obj.ReplaceChild Method Replaces an old child node with a new
child node.

xmlnode_obj.SetAttribute Method Sets the value of an existing specified
attribute that is a child of this node.

xmlnode_obj.SetElement Method Sets the value of an existing specified
element that is a child of this node.

xmlnode_obj.Type Get
Property Returns the node type as a String.

Get/Set Returns the node value as a String or sets
 node value. xmlnode_obj.Value Property the

518

XML Classes

New XmlDoc Constructor

. Constructor for creating a new XML document tree object

xmldoc_object = New XmlDoc(document_name)

Prerequisites

None

Parameters

document_name

l
section in the new document. The name must not contain any special
characters.

Remark

ent_name as a child of
the document node.

m

atically create a new document tree object.

Exampl

 As XmlDoc
doc = New XmlDoc("my_doc")

See Also

XML Classes

A required String expression that specifies the name of the top-leve

s

This method creates a new XML DOM document tree including its top-level document
node. It also creates a single element node with the name docum

The New constructor only needs to be called if you are creating a new document fro
within GPL. You do not need to invoke it before calling XmlDoc.LoadFile or
XmlDoc.LoadString, which autom

es

Dim doc

 | XmlDoc.LoadFile mlDo Str| X c.Load ing

519

GPL Dictionary Pages

xmldoc_object.CreateNode Method

object that can be added to a DOM tree. Creates and returns a new node

… xmldoc_object.CreateNode(type, name)

Prerequisites

None

Parameters

type

A required String expression that specifies the type of the node to be
created. The String value must be one of those shown below in the
Remarks section.

name

A String expression that specifies the name of the node to be created.
The name is required for some node types and ignored for others. See
the table below in the Remarks section.

Remarks

This method creates a new node for a DOM tree, but does not add it to the tree. The
node type is specified by the type parameter as shown in the following table.

type String value name
parameter Description

attribute Required

An attribute. Normally has either a document or element as
its parent. In XML data, attributes are embedded inside the
element name start tag. For example an attribute named
color of element sample appears as <sample color="value">

cdatasection Ignored
A CDATA text node permits special characters in its data
section without requiring that they be encoded. The data
starts with “<!CDATA[” and ends with “]]>”

comment Ignored
A special text node that contains a comment not considered
part of the document data. The comment data begins with
“<?--“ and ends with “-->”.

element Required
The basic node type. An element corresponds to an XML tag
that begins with “<”. For example the element named sample
begins with “<sample>” and ends with “</sample>”

processinginstruction Required
A special text node that contains processor-specific
information. The information data begins with "<?" and ends
with "?>".

text Ignored The data contents of an element or attribute. It holds

520

XML Classes

whatever is between two element tags or the “value” of an
attribute.

To be meaningful, the new node must be added to the tree using one of the XmlNode
methods: AppendChild, InsertAfter, InsertBefore,or ReplaceChild.

ild a tree by using the XmlNode methods
 AddAttribute) rather than using CreateNode.

Dim doc As XmlDoc

As XmlNode
lem As XmlNode

Dim text As XmlNode
New XmlDoc("my_doc")
 doc.DocumentElement

elem = doc.CreateNode("element", "section1")
xt = doc.CreateNode("text")
xt.value = "This is the data for section 1"

elem.AppendChild(text)
root.AppendChild(elem)

See Also

XML Cl

For most applications, it is easier to bu
(AddElement, AddElementNode and

Examples

Dim root
Dim e

doc =
root =

te
te

asses | xmlnode_object.AddAttribute | xmlnode_object.AddElement |
xmlnode_object.AddElementNode

521

GPL Dictionary Pages

XmlDoc.DecodeEntities Shared Method

ML entry that contains special characters
that have been encoded to avoid errors in XML text files.
Returns a String produced by decoding an X

… XmlDoc.DecodeEntities(input_string)

Prerequi

None

Parame

t_string

quired String expression that contains the text to be decoded.

Remarks

mes and data within an XML text document must not contain the special characters
shown in the table below. So, these special characters must be encoded if they are to be

 to decode any data
obtained from a GPL DOM document tree that includes encoded versions of these

This method converts the input_string value, decoding any encoded characters that it
encounters into standard UTF-8 characters according to the table below, and returns the
result as a String value. This method does not convert 8-bit ASCII (e.g. ISO-8859-1) to
UTF-8.

sites

ters

inpu

A re

Na

included in an XML entry. For efficiency the XML methods in GPL do not automatically
check for these characters since their use is not very common.

If you need to include these characters, this method can be used

special characters. To encode data before placing it in an XML document, see the
method XmlDoc.EncodeEntities.

Character Hex
value Name Encoding

" &H22 quote " double

& &H26 ampersand &
' &H27 apostrophe '
< &H3C less than <
> &H3E g > reater than

Examples

m root As XmlNode Di

Dim ss As String
. . .

522

XML Classes

ss = root.GetElement("section1")

See Als

s

ss = XmlDoc.DecodeEntities(ss)

o

XML Classe |XmlDoc.EncodeEntities

523

GPL Dictionary Pages

xmldoc_object.DocumentElement Method

Returns the DOM document tree top-level element as an XmlNode object.

…xmldoc_object.DocumentElement

Prerequisites

None

Parameters

None

Remarks

This method returns that top-level element as an XmlNode object.

Examples

As XmlNode

New XmlDoc("my_doc")
t = doc.DocumentElement

Console.Writeline(root.Name) ' Displays "my_doc"

See Als

XML Cl

All DOM documents, whether created by the XmlDoc constructor (New),
XmlDoc.LoadFile, or XmlDoc.LoadString, have a single top-level (or root) element
whose descendents contain the rest of the document tree.

Dim doc As XmlDoc
Dim root
doc =
roo

o

asses | XmlDoc New | XmlDoc.LoadFile | XmlDoc.LoadString

524

XML Classes

XmlDo

Returns a String generated by encoding any special characters in an input String
L entity values.

c.EncodeEntities Shared Method

expression, which permits their use in XM

… XmlDoc.EncodeEntities(input_string)

Prerequ

e

Parame

input_st

A required String expression that contains the characters to be encoded.

Remarks

Names racters
shown i encoded if they are to be
included in an XML entry. For efficiency the XML methods in GPL do not automatically

eck for these characters since their use is not very common.

l

isites

Non

ters

ring

and data within an XML text document must not contain the special cha
n the table below. So, these special characters must be

ch

If you need to include these characters, this method can be used to encode the specia
characters before they are inserted into a GPL DOM document tree. To decode data after
it has been extracted from a GPL DOM tree, see the method XmlDoc.DecodeEntities.

This method converts the input_string value, automatically encoding any special UTF-8
characters that it encounters into equivalent values according to the table below, and
returns the result as a String value. This method does not convert UTF-8 to 8-bit ASCII
(e.g. ISO-8859-1).

Character Hex
value Name Encoding

" &H22 double
quote "

& &H26 ampersand &
' &H27 apostrophe '
< &H3C less than <
> &H3E greater than >

Examples

m root As XmlNode Di

525

GPL Dictionary Pages

Dim ss As String
. . .
ss = XmlDoc.EncodeEntities(ss)
ss = root.SetElement("section1", ss)

See Als

s

o

XML Classe |XmlDoc.DecodeEntities

526

XML Classes

xmldoc_object.ErrorCode Property

Returns the error code for the most recent major operation on a DOM document tree.

…xmldoc_object.ErrorCode

Prerequisites

None

Parameters

None

Remarks

When a on an XML document tree, for example creating it
or storing it, the error status is saved within the corresponding XmlDoc object. This

returns the GPL error code corresponding to that status or 0 if the last major
operation was successful.

This pro ethod.

Many internal XML processing errors are returned as -799, "XML error". If this error
curs, the property xmldoc_object.Message should be used to determine the details of

the error.

Examples

Dim doc As XmlDoc

See Als

XML Classes

 major operation is performed

property

perty should always be checked after using the XmlDoc.LoadString m

oc

Dim instr As String
. . .
doc = XmlDoc.LoadString(instr) ' Parse the input
If (doc.ErrorCode <> 0) Then ' Check for errors
Console.Writeline("Input error " & CStr(doc.ErrorCode) _
 & ", " & doc.Message)
End If

o

 | xmldoc_object.Message

527

GPL Dictionary Pages

XmlDoc.LoadFile Shared Method

rns the created XmlDoc Loads and parses an XML text document from a file and retu
DOM tree object.

… XmlDoc.LoadFile(input_file, options)

Prerequ

rs

input_file

A required String expression that contains the name of the XML data file
to be read and parsed.

options

An optional numeric expression that specifies a bit mask of parsing-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates a DOM tree in memory from a file containing XML text data. If it
completes successfully, it returns the XmlDoc object for the DOM tree that contains all of
the parsed data. The various XmlNode methods may then be used to access the data.

This method only throws an exception in the case of severe errors. Otherwise, it returns
the XmlDoc object that includes any parsing errors. To check if the XML data has been
properly parsed, you must verify that the xmldoc_object.ErrorCode method value is 0. If
non-zero, check the error code and the xmldoc_object.Message values to determine why
the parsing failed.

The options parameter is composed of bit flags that are defined in the table below. Bits
not shown in the table should be set to 0.

isites

None

Paramete

Bit Mask Name Description

&H01 Recover Attempt to continue parsing even if an error occurs.
&H20 Suppress errors Suppress error reporting.
&H40 Suppress warnings Suppress warning reporting.

&H100 Remove blank nodes Remove nodes that contain only white space.

Examples

528

XML Classes

Dim doc As XmlDoc
doc = XmlDoc.LoadFile("/flash/test.xml") ' Parse the file

 " & CStr(doc.ErrorCode) _
.Message)

End If

See Als

XML Cl

If doc.ErrorCode <> 0 Then ' Check for errors
 Console.Writeline("Input error
 & ", " & doc

o

asses | XmlDoc New | xmldoc_object.ErrorCode | XmlDoc.LoadString |
xmldoc_object.Message

529

GPL Dictionary Pages

XmlDoc.LoadString Shared Method

 a String and returns the created XmlDoc DOM tree
object.
Parses an XML text document from

… XmlDoc.LoadString(input_string, options)

Prerequisites

None

Parameters

input_file

A required String expression that contains the XML data to be parsed.

options

An optional numeric expression that specifies a bit mask of parsing-
ble

Remarks

This method creates a DOM tree in memory from the XML text data contained in a

This method only throws an exception in the case of severe errors. Otherwise, it returns

ldoc_object.ErrorCode method value is 0. If
ldoc_object.Message values to determine why

the parsing failed.

The options eter is compo it
not show table shou to 0.

The string may be very long.

related options. The bits in the mask are defined as shown in the ta
below. If omitted, all option bits are assumed to be 0.

String. If it completes successfully, it returns the XmlDoc object for the DOM tree that
contains all of the parsed data. The various XmlNode methods may then be used to
access the data.

an XmlDoc object that includes any parsing errors. To check if the XML data has been
properly parsed, you must verify that the xm
non-zero, check the error code and the xm

 param
n in the

sed of b
ld be set

flags that are defined in the table below. Bits

Bit Mask Name Description

&H01 error occurs. Recover Attempt to continue parsing even if an
&H20 Suppress errors Suppress error reporting.
&H40 Suppress warnings Suppress warning reporting.

&H100 Remove blank nodes Remove nodes that contain only white space.

Examples

530

XML Classes

Dim doc As XmlDoc
Dim instr As String = ""
Dim line As String

eamReader("/flash/test.xml")
While inf.Peek() >=0 ' Check if end-of-file
 line = inf.Readline()
 instr &= line
End While
inf.Close()
doc = XmlDoc.LoadString(instr) ' Parse the input
If (doc.ErrorCode <> 0) Then ' Check for errors
 Console.Writeline("Input error " & CStr(doc.ErrorCode) _
 & ", " & doc.Message)
End If

See Also

XML Classes

' Read the input file

Dim inf As New Str

 | XmlDoc New | xmldoc_object.ErrorCode | XmlDoc.LoadFile | xmldoc_object.Message

531

GPL Dictionary Pages

xmldoc_object.Message Property

Returns the detailed error message for the most recent major operation on a DOM
document tree.

…xmldoc_object.Message

Prerequisites

None

Parameters

None

Remarks

major operation is performed on an XML document tree, for example creating it
or storing it, the error status is saved within the corresponding XmlDoc object. If an error
occurs, erty returns a
detailed

Many internal XML processing errors return an xmldoc_object.ErrorCode of -799, "XML
rror". If this error occurs, the xmldoc_object.Message property should be used to

determine the details of the error.

Exampl

As XmlDoc

rse the input

Console.Writeline("Input error " & CStr(doc.ErrorCode) _
 & ", " & ssage)
End If

See Also

XML Classes

When a

 as indicated by xmldoc_object.ErrorCode being non-zero, this prop
 message.

e

es

Dim doc
Dim instr As String
. . .
doc = XmlDoc.LoadString(instr) ' Pa
If (doc.ErrorCode <> 0) Then ' Check for errors

 doc.Me

 | x objmldoc_ ect.ErrorCode

532

XML Classes

xmldoc_object.SaveFile Method

Converts a DOM tree document to the XML text format and writes the data to a file.

xmldoc_object.SaveFile(output_file, options)

Prerequisites

None

Parameters

output_file

A required String expression that contains the name of the file to receive
the XML text output data.

options

An optional numeric expression that specifies a bit mask of format-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates XML text data from a DOM tree and writes it to a file. It throws an
exception if any error occurs during conversion. If an error occurs, check the values of
xmldoc_object.ErrorCode and xmldoc_object.Message to determine why the conversion
failed.

The options parameter is composed of bit flags that are defined in the table below. Bits
not shown in the table should be set to 0.

Bit Mask Name Description

&H01 Format Format the output by adding new-lines
and indenting nested elements.

&H02 Suppress declarations
Suppress output of the standard XML
declarations comments at the start of the
output.

&H04 Suppress empty tags Suppress output of empty sections.

Examples

Dim doc As XmlDoc
doc = New XmlDoc("My_doc")
. . .

533

GPL Dictionary Pages

doc.SaveFile("/flash/xml/test.xml")

XML Cl

See Also

asses | xmldoc_object.ErrorCode | XmlDoc.LoadFile | xmldoc_object.Message |
xmldoc_object.SaveString

534

XML Classes

xmldoc_object.SaveString Method

Converts a DOM tree document to the XML text format and writes the data to a String.

xmldoc_object.SaveString(output_string, options)

Prerequisites

None

Parameters

output_string

A required ByRef String variable that receives the XML formatted text
output. The string value may be very long.

s

ns. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

ows
an exception if any error occurs during conversion. If an error occurs, check the values of

ldoc_object.ErrorCode and xmldoc_object.Message to determine why the conversion
failed.

r is composed of bit flags that are defined in the table below. Bits
be set to 0.

option

An optional numeric expression that specifies a bit mask of format-
related optio

This method creates XML text data from a DOM tree and writes it to a String. It thr

xm

The options paramete
not shown in the table should

Bit Mask Name Description

&H01 Format Format the output by adding new-lines
and indenting nested elements.

&H02 S
Suppress output of the stan

uppress declarations
dard XML

declarations comments at the start of the
output.

&H04 Suppress empty tags Suppress output of empty sections.

Examples

Dim doc As XmlDoc
Dim ss As String
doc = New XmlDoc("My_doc")
. . .
doc.SaveString(ss)
Console.Writeline(ss)

535

GPL Dictionary Pages

See Also

XML Classes | xmldoc_object.ErrorCode | XmlDoc.LoadString | xmldoc_object.Message |
xmldoc_object.SaveFile

536

XML Classes

xmlnode_object.AddAttribute Method

Creates a new XML attribute and appends it as a child of the current tree node.

xmlnode_object.AddAttribute(attribute, value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

A required String expression that specifies the name of the attribute to

lue

Remark

ibute

Examples

XmlDoc
Dim root As XmlNode

 = New XmlDoc("my_doc")
t = doc.DocumentElement

root.AddAttribute("color", "orange")

See Als

XML Cl

be created.

va

An optional String expression that specifies the value of the attribute to
be created.

s

This is a convenience method that creates, initializes, and links a node to add an attr
to a DOM tree. The new attribute appears as the new last child of xmlnode_object.

Dim doc As

doc
roo

o

asses bject.| xmldoc_o CreateNode | xmlnode_object.AddElement |
xmlnode_object.SetAttribute

537

GPL Dictionary Pages

xmlnode_object.AddElement Method

Creates a new XML element and appends it as a child of the current tree node.

xmlnode_object.AddElement(element, value)

Prerequisites

The current node must be of type "element" or "document".

t

A required String expression that specifies the name of the element to
be created.

value

od that creates, initializes, and links a node to add an element
w element appears as the new last child of xmlnode_object.

Exampl

m doc As XmlDoc
m root As XmlNode

doc = New XmlDoc("my_doc")

section 1")

See Also

XML Classes

Parameters

elemen

An optional String expression that specifies the value of the element to
be created.

Remarks

This is a convenience meth
to a DOM tree. The ne

es

Di
Di

root = doc.DocumentElement
root.AddElement("section1", "Data for

 | xmldoc_object.CreateNode | xmlnode_object.AddAttribute |
xmlnode_object.SetElement

538

XML Classes

xmlnode_object.AddElementNode Method

Creates a new XML element and appends it as a child of the current node. Returns an
XmlNode object for the newly created element node.

…xmlnode_object.AddElementNode(element, value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required String expression that specifies the name of the element to

value

An optional String expression that specifies the value of the element to

Remarks

is method is identical to AddElement except that it also returns an XmlNode object for
the newly created element. This new node may be useful in creating additional levels in
your document tree.

This is a convenience method that creates, initializes, and links a node to add an element

Examples

Dim doc As XmlDoc

doc = ("my_doc")
ment
Node("section1", "Data for section 1")

elem. ("section1-1", "Data for sub-section 1-1")

See Als

XML Cl

be created.

be created.

Th

to a DOM tree. The new element appears as the new last child of xmlnode_object.

Dim root As XmlNode
Dim elem As XmlNode

New XmlDoc
root = doc.DocumentEle

ntelem = root.AddEleme
AddElement

o

asses | xmldoc_object.CreateNode | xmlnode_object.AddElement | xmlnode_object.SetElement

539

GPL Dictionary Pages

xmlnode_object.AppendChild Method

e current node. Text nodes are merged as
appropriate.
Appends a new node as the new last child of th

xmlnode_object.AppendChild(new_node)

Prerequisites

None

Parameters

new_node

A required XmlNode object that is to be appended.

Remark

This method appends a node to the specified node. The new node becomes the last child
 element whose last child is

already a text node, the new text is merged with the old text node and the new node is
d.

he node to be added may be created by XmlDoc.CreateNode or may have been
 using RemoveChild. If you are appending a new attribute or

enient to use AddAttribute or AddElement.

at is a member of one document tree to a different
m a different

Examples

Dim text As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem = doc.CreateNode("element", "section1")
text = doc.CreateNode("text")
text.value = "This is the data for section 1"
elem.AppendChild(text)
root.AppendChild(elem)

See Also

XML Classes

s

of the specified node. If a text node is being appended to an

free

T
remo rom the treeved f
element, it is more conv

You cannot happend a node t
document tree. Use the Clone method to make a copy of a node fro
document.

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem As XmlNode

 | xmldoc_object.CreateNode | xmlnode_object.AddAttribute |
xmlnode_object.AddElement

540

XML Classes

xmlnode_object.ChildNodeCount Property

Returns the number of children of the current node.

…xmlnode_object.ChildNodeCount

Prerequisites

Remarks

This property counts the number of children of a node. Attributes are not considered
ildren and are not included in this count.

if

Exampl

Dim doc As XmlDoc

root As XmlNode
y_doc")
lement

dNodeCount) ' Output is "1"

See Als

XML Classes

None

Parameters

None

ch

The method xmlnode_object.HasChildNodes is more efficient if you only want to know
a node has children but do not care how many it has.

es

Dim
doc = New XmlDoc("m
root = doc.DocumentE
root.AddElement("section1", "Data for section 1")
Console.Writeline(root.Chil

o

 | xmlnode_object.HasChildNodes

541

GPL Dictionary Pages

xmlnode_object.Clone Method

Creates a new XML node that is a clone of the current node.

…xmlnode_object.Clone(deep, xmldoc_object)

Prerequisites

None

Parameters

deep

ode should be made.

ldoc_object

e same
document tree as the original copied node.

Remark

 a new document tree.

 deep parameter is
True, all nodes beneath the current node are copied recursively to create a new subtree.

Examples

elem1 = root.AddElementNode("section1", "Data for section 1")
b1 = elem1.AddElementNode("section-a", "Sub-section data")

AddElementNode("section2", "Data for section 2")

See Also

XML Classes

A required Boolean numeric expression that determines if a deep or
shallow copy of the n

xm

An optional XmlDoc object that specifies the document tree that will
contain the new node. If omitted, the clone will be a member of th

s

This method creates a copy of an existing node and also provides a means for copying
nodes to

If the deep parameter is False, only the current node is copied. If the

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim sub1 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement

su
elem2 = root.
' Duplicate section-a under section 2
elem2.AppendChild(sub1.Clone(True))

 | xmldoc_object.CreateNode

542

XML Classes

xmlnode_object.FirstChild Method

Returns the first child node of the current node.

…xmlnode_object.FirstChild

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the first child node of the
rrent node. If the current node does not have any children, the returned object is

Nothing

ode in the DOM tree.

Examples

 doc As XmlDoc
root As XmlNode

e

", "Data for section 1")

Console.Writeline(root.FirstChild.Name) ' Displays "section1"

cu

This method does not create a new n

Dim
Dim
Dim elem1 As XmlNod
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc. DocumentElement

dElementNodeelem1 = root.Ad ("section1
elem2 = root.AddElementNode("section2", "Data for section 2")

See Also

XML Classes | xmlnode_object.LastChild | xmlnode_object.NextSibling | xmlnode_object.ParentNode |
xmlnode_object.PreviousSibling

543

GPL Dictionary Pages

xmlnode_object.GetAttribute Method

Returns a String containing the value of an existing attribute of the current node.

… xmlnode_object.GetAttribute(attribute)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

A required String expression that specifies the name of the attribute to
be accessed.

Remarks

is is a convenience method that finds a named attribute and returns the value of the
attribute. The attribute must be an immediate child of the current node.

Exampl

t
ew XmlDoc("my_doc")

root = doc.DocumentElement

XML Cl

Th

If the name is not found, an exception is thrown.

es

Dim doc As XmlDoc
Dim roo As XmlNode
doc = N

root.AddAttribute("color", "orange")
Console.Writeline(root.GetAttribute("color")) 'Output is "orange"

See Also

asses | xmlnode_object.GetAttributeNode | xmlnode_object.GetElement |
xmlnode_object.SetAttribute

544

XML Classes

xmlnode_object.GetAttributeNode Method

 has the specified
attribute name.
Returns the attribute node that is a child of the current node and

… xmlnode_object.GetAttributeNode(attribute)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

ression that specifies the name of the attribute to
be found. If the String is omitted or empty (""), the node for the first
attribute is returned.

Remark

This is a convenience method that finds an attribute node that has a specified attribute

e attribute parameter is omitted or empty, the first attribute of the current node is
returned. If there are no attributes for the current node, a Nothing object is returned.

specified but no matching attribute is found, an exception is

 attr
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("color", "orange")
attr = root.GetAttributeNode("color")
Console.Writeline(attr.Name) 'Output is "color"

See Also

XML Classes

An optional String exp

s

name. A new XmlNode object corresponding to the attribute is returned.

If th

If the ute parameter is attrib
thrown.

The attribute node e an immedi child of the current node. must b ate

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim As XmlNode

 | xmlnode_object.GetAttribute | xmlnode_object.GetElementNode |
xmlnode_object.SetAttribute

545

GPL Dictionary Pages

xmlnode_object.GetElement Method

Returns a String that contains the value of a child element of the current node.

…xmlnode_object.GetElement(element)

Prerequisites

The current node must be of type "element" or "document".

element

A required String expression that specifies the name of the child
element to be found.

Remark

 element must be an
e.

If an element with the specified name is not found, an exception is thrown.

Exampl

ot.AddElement("section1", "data")
nsole.Writeline(root.GetElement("section1")) ' Output is "data"

XML Classes

Parameters

s

This is a convenience method that finds a named element. The
immediate child of the current nod

es

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
ro
Co

See Also

 | xmlnode_object.GetAttribute | xmlnode_object.GetElementNode |
xmlnode_object.SetElement

546

XML Classes

xmlnode_object.GetElementNode Method

as the specified
element name.
Returns the element node that is a child of the current node and h

…xmlnode_object.GetElementNode(element)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

l String expression that specifies the name of the child
element to be found. If the String is omitted or empty (""), the node for
the first child element is returned.

Remark

This is a convenience method that finds a named child element node. A new XmlNode

If the element parameter is omitted or empty, the first child element of the current node is
rned. If there are no child elements for the current node, a Nothing object is returned.

the element parameter is specified but no such element is found, an exception is

diate child of the current node.

Exampl

Dim As XmlDoc

doc")
root = doc.DocumentElement
root.AddElement("section1", "data")
elem = root.GetElementNode("section1")
Console.Writeline(elem.Name) ' Output is "section1"

See Also

XML Classes

An optiona

s

object corresponding to the element is returned.

retu

If
thrown.

The element must be an imme

es

 doc

Dim root As XmlNode
Dim elem As XmlNode
doc = New XmlDoc("my_

 | xmlnode_object.GetAttributeNode | xmlnode_object.GetElement |
xmlnode_object.SetElement

547

GPL Dictionary Pages

xmlnode_object.HasAttribute Method

de is a child of this node. Returns True if the named attribute no

… xmlnode_object.HasAttribute(attribute)

Prerequi

The current node must be of type "element" or "document".

Parameters

attribute

A required String expression that specifies the name of the child
ibute to be found.

Remarks

convenience method that finds a named attribute node. The attribute must be an
immediate child of the current node.

If the na e value is returned. Otherwise, a False value is returned.

doc = New XmlDoc("my_doc")

Console.Writeline HasAttribute

See Als

XML Cl

sites

attr

This is a

me is found, a Tru

Examples

Dim doc As XmlDoc
Dim root As XmlNode

root = doc.DocumentElement
root.AddAttribute("color", "orange")

(root. ("color")) ' Output is "-1"

o

asses | xmlnode_object.GetAttribute | xmlnode_object.GetAttributeNode |
_object.xmlnode HasElement

548

XML Classes

xmlno

te child nodes.

de_object.HasChildNodes Property

Returns True if the current node has any non-attribu

… xmlnode_object.HasChildNodes

Prerequisites

None

Parameters

None

Remarks

This property returns True if the current node has any children, otherwise it returns
False. Attributes are not considered children and are not included in this test.

To determine how many children a node has, use the method
xmldoc_object.ChildNodeCount.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddElement("section1", "Data for section 1")
Console.Writeline(root.HasChildNodes) ' Output is "-1"

See Also

XML Classes | xmlnode_object.ChildNodeCount

549

GPL Dictionary Pages

xmlnode_object.HasElement Method

Returns True if a specified element is a child of the current node.

… xmlnode_object.HasElement(element)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required String expression that specifies the name of the element to

Remark

This is a an
immedia ent node.

 an element with the specified name is found, a True value is returned. Otherwise, a
False value is returned.

Exampl

See Als

XML Classe

be found.

s

 convenience method that finds a named element. The element must be
te child of the curr

If

es

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddElement("section1", "Data for section 1")
Console.Writeline(root.HasElement("section1")) ' Output is "-1"

o

s | xmlnode_object.GetElement | xmlnode_object.GetElementNode |
_object.xmlnode HasAttribute

550

XML Classes

xmlnode_object.InsertAfter Method

Inserts a new node, after a specified node, in the list of children of the current node. Text
nodes are merged as appropriate.

xmlnode_object.InsertAfter(new_child, ref_child)

Prerequisites

None

Parameters

new_child

A required XmlNode object that is to be inserted into the list of children.

ref_child

An optional XmlNode object. If specified, it must be an existing child of
the current node.

Remarks

The new_child node is inserted as a child of the current node, and a sibling of the
ref_child node. It is inserted immediately after the ref_child node in the DOM tree.

If ref_child is omitted, the new_child is added to the end of the list of children.

The node to be added may be created by XmlDoc.CreateNode or may have been
removed from the tree using RemoveChild.

You cannot insert a node that is a member of one document tree into a different
document tree. Use the Clone method if you wish to insert a copy of a node from a
different document.

If a text node is inserted next to another text node, the new text is merged with the old
text node and the new node is freed.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")

551

GPL Dictionary Pages

root = doc.DocumentElement
elem1 = doc.CreateNode("element", "section1")

section 1"

AppendChild
)

root.InsertAfter(elem2, elem1)

See Als

text = doc.CreateNode("text")
text.Value = "This is the data for
elem1.AppendChild(text)
root. (elem1)
elem2 = doc.CreateNode("element", "section2"

o

XML Classes | xmldoc_object.CreateNode | xmlnode_object.AppendChild |
xmlnode_object.InsertBefore

552

XML Classes

xmlnode_object.InsertBefore Method

f children of the current node.
Text nodes are merged as appropriate.
Inserts a new node, before a specified node, in the list o

xmlnode_object.InsertBefore(new_child, ref_child)

Prerequisites

None

Parameters

new_child

A required XmlNode object that is to be inserted into the list of children.

ref_child

An optional XmlNode object. If specified, it must be an existing child of
the curre

Remark

node, and a sibling of the
 node. It is inserted immediately before the ref_child node in the DOM tree.

ng of the list of children.

The node to be added may be created by XmlDoc.CreateNode or may have been
removed from the tree using RemoveChild.

You cannot insert a node that is a member of one document tree into a different
document tree. Use the Clone method if you wish to insert a copy of a node from a
different document.

If a text node is inserted next to another text node, the new text is merged with the old
text node and the new node is freed.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = doc.CreateNode("element", "section1")
text = doc.CreateNode("text")

nt node.

s

The new_child node is inserted as a child of the current
ref_child

If ref_child is omitted, the new_child is added to the beginni

553

GPL Dictionary Pages

text.Value = "This is the data for section 1"
elem1.AppendChild(text)

ction2")

See Als

XML Cl

root.AppendChild(elem1)
elem2 = doc.CreateNode("element", "se
root.InsertBefore(elem2, elem1)

o

asses | xmldoc_object.CreateNode | xmlnode_object.AppendChild | xmlnode_object.InsertAfter

554

XML Classes

xmlnode_object.LastChild Method

Returns the last child node of the current node.

…xmlnode_object.LastChild

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the last child node of th
current node. If the current node does not have any children, the returned object is
Nothing.

e

ion 1")

nsole.Writeline(root.LastChild.Name) ' Displays "section2"

XML Classes

This method does not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for sect
elem2 = root.AddElementNode("section2", "Data for section 2")
Co

See Also

 | xmlnode_object.FirstChild | xmlnode_object.NextSibling | xmlnode_object.ParentNode |
xmlnode_object.PreviousSibling

555

GPL Dictionary Pages

xmlnode_object.Name Property

Returns the name of the current node, if it has a name.

…xmlnode_object.Name

Prerequisites

None

Parameters

None

Remarks

Returns the name of the current node or an empty string ("") if the node has no name.

es Exampl

Dim doc As XmlDoc
 root As XmlNode
 = New XmlDoc("my_doc")

root = doc.DocumentElement
nsole.Writeline(root.Name) ' Displays "my_doc"

See Als

XML Cl

Dim
doc

Co

o

asses | xmlnode_object.Type | xmlnode_object.Value

556

XML Classes

xmlnode_object.NextSibling Method

Returns the next sibling node of the current node.

…xmlnode_object.NextSibling

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the next sibling of the
current node. If there is no next sibling, the returned object is Nothing.

A sibling is a node that has the same parent as the current node. The order of siblings
corresponds to the order of data items in the XML text document.

This method does not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = root.AddElementNode("section2", "Data for section 2")
Console.Writeline(elem1.NextSibling.Name) ' Displays "section2"

See Also

XML Classes | xmlnode_object.ParentNode | xmlnode_object.PreviousSibling

557

GPL Dictionary Pages

xmlnode_object.OwnerDocument Method

Returns the XmlDoc object for the DOM tree that contains the current node.

…xmlnode_object.OwnerDocument

Prerequisites

None

Parameters

None

Remarks

This method provides a back-pointer for the current node to the XmlDoc object for the
de’s DOM tree. Normally, all nodeobjects have an associated XmlDoc object, unless

the document tree was freed by some other method.

Examples

Dim root As XmlNode
1 = New XmlDoc("my_doc")

DocumentElement
OwnerDocument

int to same object, doc1 Is doc2

See Als

XML Cl

no

If the current object has no associated document, an exception is thrown.

Dim doc1 As XmlDoc
Dim doc2 As XmlDoc

doc
root = doc1.
doc2 = root.
' doc1 and doc 2 po

o

asses | xmlnode_object.ParentNode

558

XML Classes

xmlnode_object.ParentNode Method

e. Returns the parent node of the current nod

…xmlnode_object.ParentNode

Prerequi

Parame

Remark

This me urrent
node. If the current node is not part of a DOM tree, it will not have a parent and the

turned object is Nothing.

Examples

Dim sub1 As XmlNode
 = New XmlDoc("my_doc")
t = doc.DocumentElement

elem1 = root.AddElementNode("section1", "Data for section 1")
b1 = elem1.AddElementNode("section-a", "Sub-section data")

b1.ParentNode.Name) ' Output is "section1"

See Als

XML Cl

sites

None

ters

None

s

thod returns a new XmlNode object that corresponds to the parent of the c

re

This method does not create a new node in the DOM tree.

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode

doc
roo

su
Console.Writeline(su

o

asses | xmlnode_object.NextSibling | xmlnode_object.OwnerDocument |
xmlnode_object.PreviousSibling

559

GPL Dictionary Pages

xmlnode_object.PreviousSibling Method

Returns the previous sibling node of the current node.

…xmlnode_object.PreviousSibling

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the previous sibling of
e current node. If there is no previous sibling, the returned object is Nothing.

This method does not create a new node in the DOM tree.

Examples

 doc As XmlDoc
 root As XmlNode

Dim elem1 As XmlNode
 elem2

_doc")
ement
tNode("section1", "Data for section 1")
tNode("section2", "Data for section 2")

iousSibling.Name) ' Displays "section1"

See Als

XML Classes

th

A sibling is a node that has the same parent as the current node. The order of siblings
corresponds to the order of data items in the XML text document.

Dim
Dim

Dim As XmlNode
doc = New XmlDoc("my
root = doc.DocumentEl
elem1 = root.AddElemen
elem2 = root.AddElemen
Console.Writeline(elem2.Prev

o

 | xmlnode_object.NextSibling | xmlnode_object.ParentNode

560

XML Classes

xmlnode_object.RemoveAttribute Method

s from a DOM tree. Removes specified child attribute node and its subtree

xmlnode_object.RemoveAttribute(attribute)

Prerequisites

The current node must be of type "element" or "document".

 be

Remarks

This is a convenience method that finds and removes a child node that contains a
specifie eleted and
are no l

 an attribute is not found, an exception is thrown.

Exampl

Dim doc As XmlDoc

r", "orange")

See Als

es

Parameters

attribute

A required string expression that specifies the name of the attribute to
removed.

d attribute. The removed attribute node and any nodes beneath it are d
onger accessible.

If

The attribute must be immediate child of the current node.

es

Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("colo
root.RemoveAttribute("color") ' Attribute is removed

o

XML Class | xmlnode_object.AddAttribute | xmlnode_object.RemoveChild |
bject.xmlnode_o RemoveElement

561

GPL Dictionary Pages

xmlnode_object.RemoveChild Method

specified child nRemove a ode and its subtree from the DOM tree.

xmlnode_object.RemoveChild(old_child)

Prerequisites

None

Parameters

old_child

A required XmlNode object that indicates the DOM tree node to remove.

Remarks

The DOM node (and its subtree) associated with the old_child object is removed from the
tree. This node and its subtree can then be placed in the same tree at a different location.

The old_child object must be an immediate child of the current node.

If a node is removed from the DOM tree and not placed somewhere else in the same
tree, it and its subtree are lost once the corresponding XmlNode object is destroyed.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = root.AddElementNode("section2", "Data for section 2")
root.RemoveChild(elem1) ' "section1" is removed from the tree

See Also

XML Classes | xmlnode_object.RemoveAttribute | xmlnode_object.RemoveElement

562

XML Classes

xmlnode_object.RemoveElement Method

nd its subtree from the DOM tree. Removes a specified child element node a

xmlnode_object.RemoveElement(element)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required string expression that specifies the name of the element to be
removed.

Remark

This is a ment node in a
DOM tr oved element node and the nodes beneath it are deleted and are no
longer available.

If the element is not found, an exception is thrown.

rrent node.

Exampl

root As XmlNode
 elem1 As XmlNode

Dim elem2 As XmlNode
c = New XmlDoc("my_doc")

lement
ntNode("section1", "Data for section 1")

") ' Removes "section1"

See Als

ses

s

 convenience method that finds and removes a specified child ele
ee. The rem

The element must be an immediate child of the cu

es

Dim doc As XmlDoc
Dim
Dim

do
root = doc.DocumentE
elem1 = root.AddEleme
elem2 = root.AddElementNode("section2", "Data for section 2")
root.RemoveElement("section1

o

XML Clas | xmlnode_object.AddElement| xmlnode_object.RemoveAttribute |
xmlnode_object.RemoveChild

563

GPL Dictionary Pages

xmlnode_object.ReplaceChild Method

 node. Replaces a child of the current node with a new

xmlnode_object.ReplaceChild(new_child, old_child)

Prerequisites

None

Parameters

new_child

ree. This new node will be inserted as a child of the current
node.

old_child

A required XmlNode object that specifies a child of the current node.
This child will be removed from the DOM tree.

Remark

The old_child node and its subtree are removed from the DOM tree and the new_child
btree can then be

eted.

The old_child node must be an immediate child of the current node.

not place a node that is a member of one document tree into a different
cument tree. Use the Clone method if you wish to make a copy of a node for a

e.

OM tree and is not placed somewhere else in the tree, it is

Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = doc.CreateNode("element", "section2")
text = doc.CreateNode("text")
text.Value = "Data for section 2"

A required XmlNode object that specifies a new node in the current
node’s DOM t

s

node and its subtree are put in its place. The old_child node and its su
placed at a different location in the same tree or they can be del

You can
do
different document tre

If a node is removed from a D
deleted once the corresponding XmlNode object is destroyed.

Examples

Dim doc As XmlDoc
Dim root As XmlNode

564

XML Classes

elem2.AppendChild(text)
root.ReplaceChild(elem2, elem1) ' Replace section1 with section2

XML Cl

See Also

asses | xmlnode_object.RemoveAttribute | xmlnode_object.RemoveChild |
xmlnode_object.RemoveElement

565

GPL Dictionary Pages

xmlnode_object.SetAttribute Method

f an existing attribute. Changes the value o

xmlnode_object.SetAttribute(attribute, new_value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

A required String expression that specifies the name of the attribute to
be changed.

new_value

A required String expression that specifies the new value of the
attribute.

Remarks

This is a convenience method that modifies an attribute value in a DOM tree. The
new_value replaces the old value of the attribute.

The attribute must be an immediate child of the current node.

If the attribute is not found, an exception is thrown.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("color", "orange")
root.SetAttribute("color", "green") ' Change color to "green"

See Also

XML Classes | xmlnode_object.GetAttribute | xmlnode_object.SetElement

566

XML Classes

xmlnode_object.SetElement Method

Changes the value of an existing child element.

xmlnode_object.SetElement(element, new_value)

Prerequi

rrent node must be of type "element" or "document".

Parame

ent

A required String expression that specifies the name of the element to
be changed.

new_value

 that specifies the new value of the element.

od that modifies an element value in a DOM tree. The
e old value of the element.

diate child of the current node.

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddElement("section1", "Data for section 1")
root.SetElement("section1", "New data for section 1")

See Also

XML Classes

sites

The cu

ters

elem

A required String expression

Remarks

This is a convenience meth
new_value replaces th

The element must be an imme

If the element is not found, an exception is thrown.

Examples

 | xmlnode_object.GetElement | xmlnode_object.SetAttribute

567

GPL Dictionary Pages

568

xmlnode_object.Type Property

Returns the type of the current node as a String.

… xmlnode_object.Type

Prerequisites

None

Parameters

None

Remarks

Returns one of the type Strings from the table below.

TtypeT String Description

attribute An attribute. Normally has a text node child
with the attribute value.

cdatasection
A CDATA text node that allows special
characters in the data without encoding
them.

comment A special text node that contains a comment
not considered part of the document data.

element

The basic node type. An element
corresponds to an XML text tag that begins
with “<name>” and ends with “</name>”.
Normally has a text node child with the
element value.

processinginstructionA text node that contains processor-specific
information.

text
The data contents of an element or attribute.
It holds whatever is between two element
tags, or the “value” of an attribute.

attributedeclaration
document

documentfragment
documenttype

dtd
elementdeclaration

entity
entitydeclaration
entityreference
htmldocument
namespace

notation
xincludeend

You cannot create nodes of these types
within the GPL classes, but they may appear
in externally created XML text documents.

XML Classes

569

xincludestart

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
Console.Writeline(root.Type) ' Displays "element"

See Also

TXML Classes T | Txmlnode_object. TName | Txmlnode_objectTT.TValue

GPL Dictionary Pages

570

xmlnode_object.Value Property

Returns the value of the current node as a String or sets the value of the current node.

… xmlnode_object.Value
-or-
Txmlnode_objectT.Value = Tstring_valueT

Prerequisites

None

Parameters

None

Remarks

If a node does not have a value directly, any child text nodes are accessed transparently
and their values are set or returned.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem = root.AddElementNode("section1", "Data for section 1")
Console.Writeline(elem.Value) ' Writes "Data for section 1"

See Also

TXML Classes T | Txmlnode_object. TName | Txmlnode_objectTT.TTTypeT

	GPL Dictionary Pages Summary
	Array Class
	Array Class Summary
	array.GetUpperBound Property
	array.Length Property
	array.Rank Property

	Console Class
	Console Class Summary
	Console.Write Method
	Console.WriteLine Method

	Controller Class
	Controller Class Summary
	Controller.Command Method
	Controller.ErrorLog Property
	Controller.Load Method
	Controller.PDb Property
	Controller.PDbNum Property
	Controller.PowerEnabled Property
	Controller.PowerState Property
	Controller.RecordButton Property
	Controller.ShowDialog Method - Basic Modes
	Controller.ShowDialog Method - Advanced Mode
	Controller.ShowDialogMCP Method
	Controller.SleepTick Method
	Controller.SoftEStop Property
	Controller.SystemMessage Method
	Controller.SystemSpeed Property
	Controller.Tick Property
	Controller.Timer Property
	Controller.Unload Method

	Exception Handling
	Exception Handling Summary
	Catch Statement
	End Try Statement
	Exit Try Statement
	Finally Statement
	Throw Statement
	Try..Catch..Finally..End Try Statements
	exception_object.Axis Property
	exception_object.Clone Method
	exception_object.ErrorCode Property
	exception_object.Message Method
	exception_object.Qualifier Property
	exception_object.RobotError Property
	exception_object.RobotNum Property
	exception_object.UpdateErrorCode Method

	File and Serial I/O Classes
	File and Serial I/O Classes Summary
	File.CreateDirectory Method
	File.DeleteDirectory Method
	File.DeleteFile Method
	File.GetDirectories Method
	File.GetFiles Method
	New StreamReader Constructor
	streamreader_object.Close Method
	streamreader_object.Peek Method
	streamreader_object.Read Method
	streamreader_object.ReadLine Method
	New StreamWriter Constructor
	streamwriter_object.AutoFlush Property
	streamwriter_object.Close Method
	streamwriter_object.Flush Method
	streamwriter_object.NewLine Property
	streamwriter_object.Write Method
	streamwriter_object.WriteLine Method

	Functions
	Function Summary
	CBool Function
	CByte Function
	CDbl Function
	CInt Function
	CShort Function
	CSng Function
	CStr Function
	Fix Function
	Hex Function
	Int Function
	Rnd Function

	Latch Class
	Latch Class Summary
	latch_object.Angle Property
	Latch.Count Shared Property
	Latch.Flush Shared Method
	latch_object.Location Method
	Latch.Result Shared Method
	latch_object.Signal Property
	Latch.ThreadEvent Shared Property
	latch_object.Timestamp Property

	Location Class
	Location Class Summary
	location_object.Angle Property
	location_object.Angles Method
	location_object.Clone Method
	location_object.Config Property
	location_object.ConveyorLimit Method
	Location.Distance Method
	location_object.Here Method
	location_object.Here3 Method
	location_object.Inverse Method
	location_object.KineSol Method
	location_object.Mul Method
	location_object.Normalize Method
	location_object.Pitch Property
	location_object.Pos Property
	location_object.PosWrtRef Property
	location_object.RefFrame Property
	location_object.Roll Property
	location_object.Text Property
	location_object.Type Property
	location_object.X Property
	location_object.XYZ Method
	location_object.XYZInc Method
	Location.XYZValue Method
	location_object.Y Property
	location_object.Yaw Property
	location_object.Z Property
	location_object.ZClearance Property
	location_object.ZWorld Property

	Math Class
	Math Class Summary
	Math.Abs Method
	Math.Acos Method
	Math.Asin Method
	Math.Atan Method
	Math.Atan2 Method
	Math.Ceiling Method
	Math.Cos Method
	Math.Cosh Method
	Math.E Method
	Math.Exp Method
	Math.Floor Method
	Math.Log Method
	Math.Log10 Method
	Math.Max Method
	Math.Min Method
	Math.PI Method
	Math.Pow Method
	Math.Sign Method
	Math.Sin Method
	Math.Sinh Method
	Math.Sqrt Method
	Math.Tan Method
	Math.Tanh Method

	Modbus Class
	Modbus Class Summary
	modbus_object.Close Method
	modbus_object.ReadCoils Method
	modbus_object.ReadDeviceID Method
	modbus_object.ReadDiscreteInputs Method
	modbus_object.ReadHoldingRegisters Method
	modbus_object.ReadInputRegisters Method
	modbus_object.Timeout Property
	modbus_object.WriteMultipleCoils Method
	modbus_object.WriteMultipleRegisters Method
	modbus_object.WriteSingleCoil Method
	modbus_object.WriteSingleRegister Method

	Move Class
	Move Class Summary
	Move.Approach Method
	Move.Arc Method
	Move.Circle Method
	Move.Delay Method
	Move.Extra Method
	Move.ForceOverlap Method
	Move.Loc Method
	Move.OneAxis Method
	Move.Rel Method
	Move.SetJogCommand Method
	Move.SetRealTimeMod Method
	Move.SetSpeeds Method
	Move.SetTorques Method
	Move.StartJogMode Method
	Move.StartRealTimeMod Method
	Move.StartSpeedDAC Method
	Move.StartTorqueCntrl Method
	Move.StartVelocityCntrl Method
	Move.StopSpecialModes Method
	Move.Trigger Method
	Move.WaitForEOM Method

	Networking Classes
	Networking Classes Summary
	New IPEndPoint Constructor
	ipendpoint_object.IPAddress Property
	ipendpoint_object.Port Property
	socket_object.Available Property
	socket_object.Blocking Property
	socket_object.Close Method
	socket_object.Connect Method
	socket_object.KeepAlive Property
	socket_object.Receive Method
	socket_object.ReceiveFrom Method
	socket_object.ReceiveTimeout Property
	socket_object.Send Method
	socket_object.SendTimeout Property
	socket_object.SendTo Method
	New TcpClient Constructor
	tcpclient_object.Client Method
	tcpclient_object.Close Method
	New TcpListener Constructor
	tcplistener_object.AcceptSocket Method
	tcplistener_object.Close Method
	tcplistener_object.Pending Property
	tcplistener_object.Start Method
	tcplistener_object.Stop Method
	New UdpClient Constructor
	udpclient_object.Client Method
	udpclient_object.Close Method

	Profile Class
	Profile Class Summary
	profile_object.Accel Property
	profile_object.AccelRamp Property
	profile_object.Clone Method
	profile_object.Decel Property
	profile_object.DecelRamp Property
	profile_object.InRange Property
	profile_object.Speed Property
	profile_object.Speed2 Property
	profile_object.Straight Property
	profile_object.Text Property

	Reference Frame Class
	RefFrame Class Summary
	refframe_object.ConveyorOffset Property
	refframe_object.ConveyorRobot Property
	refframe_object.Loc Property
	refframe_object.PalletIndex Property
	refframe_object.PalletMaxIndex Property
	refframe_object.PalletNextPos Method
	refframe_object.PalletOrder Property
	refframe_object.PalletPitch Property
	refframe_object.PalletRowColLay Method
	refframe_object.Pos Method
	refframe_object.PosWrtRef Method
	refframe_object.Text Property
	refframe_object.Type Property

	Robot Class
	Robot Class Summary
	Robot.Attached Property
	Robot.Base Property
	Robot.CartMode Property
	Robot.Custom Property
	Robot.DefLinComp Method
	Robot.Dest Property
	Robot.DestAngles Property
	Robot.Home Method
	Robot.HomeAll Method
	Robot.JointToMotor Method
	Robot.LastProfile Property
	Robot.MotorTempStatus Property
	Robot.MotorToJoint Method
	Robot.Payload Property
	Robot.RapidDecel Property
	Robot.RealTimeModAcm Property
	Robot.RestartBase Property
	Robot.RestartTool Property
	Robot.Selected Property
	Robot.Source Property
	Robot.SourceAngles Property
	Robot.SpeedAngles Property
	Robot.Tool Property
	Robot.TrajState Property
	Robot.Where Property
	Robot.WhereAngles Property

	Signal Class
	Signal Class Summary
	Signal.AIO Property
	Signal.DIO Property

	Statements
	Statements Summary
	Call Statement
	Case, Case Else Statements
	Class Statement
	Const Statement
	Delegate Statement
	Dim Statement
	Do...Loop Statements
	Else, ElseIF Statements
	End Statements
	Exit Statements
	For...Next Statements
	Function Statement
	Get Statement
	GoTo Statement
	If..Then...Else...End If Statements
	Loop Statements
	Module Statement
	Next Statements
	Property Statement
	ReDim Statement
	Return Statement
	Select...Case...End Select Statements
	Set Statement
	Sub Statement
	While...End While Statements

	Strings
	String Summary
	String.Compare Method
	string.IndexOf Method
	string.Length Property
	string.Split Method
	string.Substring Method
	string.ToLower Method
	string.ToUpper Method
	string.Trim Method
	string.TrimEnd Method
	string.TrimStart Method
	Asc Function
	Chr Function
	Format Function
	FromBitString Function
	Instr Function
	LCase Function
	Len Function
	Mid Function
	ToBitString Function
	UCase Function

	Thread Class
	Thread Class Summary
	New Thread Constructor
	thread_object.Abort Method
	thread_object.Argument Property
	Thread.CurrentThread Shared Method
	thread_object.Join Method
	thread_object.Name Property
	thread_object.Project Property
	thread_object.Resume Method
	Thread.Schedule Shared Method
	thread_object.SendEvent Method
	Thread.Sleep Shared Method
	thread_object.Start Method
	thread_object.StartProcedure Property
	thread_object.Suspend Method
	Thread.TestAndSet Shared Method
	thread_object.ThreadState Property
	Thread.WaitEvent Shared Method

	Vision Classes
	Vision Classes Summary
	vision_object.Disconnect Method
	vision_object.ErrorCode Property
	vision_object.Instance Property
	vision_object.IPAddress Property
	vision_object.Process Method
	vision_object.Result Method
	vision_object.ResultCount Method
	vision_object.Status Property
	vision_object.ToolProperty Property
	visresult_object.ErrorCode Property
	visresult_object.Info Property
	visresult_object.InfoCount Property
	visresult_object.InfoString Property
	visresult_object.InspectActual Property
	visresult_object.InspectPassed Property
	visresult_object.Loc Property
	visresult_object.Type Property

	XML Classes
	XML Classes Summary
	New XmlDoc Constructor
	xmldoc_object.CreateNode Method
	XmlDoc.DecodeEntities Shared Method
	xmldoc_object.DocumentElement Method
	XmlDoc.EncodeEntities Shared Method
	xmldoc_object.ErrorCode Property
	XmlDoc.LoadFile Shared Method
	XmlDoc.LoadString Shared Method
	xmldoc_object.Message Property
	xmldoc_object.SaveFile Method
	xmldoc_object.SaveString Method
	xmlnode_object.AddAttribute Method
	xmlnode_object.AddElement Method
	xmlnode_object.AddElementNode Method
	xmlnode_object.AppendChild Method
	xmlnode_object.ChildNodeCount Property
	xmlnode_object.Clone Method
	xmlnode_object.FirstChild Method
	xmlnode_object.GetAttribute Method
	xmlnode_object.GetAttributeNode Method
	xmlnode_object.GetElement Method
	xmlnode_object.GetElementNode Method
	xmlnode_object.HasAttribute Method
	xmlnode_object.HasChildNodes Property
	xmlnode_object.HasElement Method
	xmlnode_object.InsertAfter Method
	xmlnode_object.InsertBefore Method
	xmlnode_object.LastChild Method
	xmlnode_object.Name Property
	xmlnode_object.NextSibling Method
	xmlnode_object.OwnerDocument Method
	xmlnode_object.ParentNode Method
	xmlnode_object.PreviousSibling Method
	xmlnode_object.RemoveAttribute Method
	xmlnode_object.RemoveChild Method
	xmlnode_object.RemoveElement Method
	xmlnode_object.ReplaceChild Method
	xmlnode_object.SetAttribute Method
	xmlnode_object.SetElement Method
	xmlnode_object.Type Property
	xmlnode_object.Value Property

